Description: Reversal law for triple conjunction. (Contributed by NM, 21-Apr-1994)
Ref | Expression | ||
---|---|---|---|
Assertion | 3anrev | ⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ↔ ( 𝜒 ∧ 𝜓 ∧ 𝜑 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3ancoma | ⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ↔ ( 𝜓 ∧ 𝜑 ∧ 𝜒 ) ) | |
2 | 3anrot | ⊢ ( ( 𝜒 ∧ 𝜓 ∧ 𝜑 ) ↔ ( 𝜓 ∧ 𝜑 ∧ 𝜒 ) ) | |
3 | 1 2 | bitr4i | ⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ↔ ( 𝜒 ∧ 𝜓 ∧ 𝜑 ) ) |