Step |
Hyp |
Ref |
Expression |
1 |
|
3atnelvol.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
2 |
|
3atnelvol.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
3 |
|
3atnelvol.v |
⊢ 𝑉 = ( LVols ‘ 𝐾 ) |
4 |
|
hllat |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ Lat ) |
5 |
4
|
adantr |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) → 𝐾 ∈ Lat ) |
6 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
7 |
6 1 2
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ) |
8 |
7
|
3adant3r3 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) → ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ) |
9 |
|
simpr3 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) → 𝑅 ∈ 𝐴 ) |
10 |
6 2
|
atbase |
⊢ ( 𝑅 ∈ 𝐴 → 𝑅 ∈ ( Base ‘ 𝐾 ) ) |
11 |
9 10
|
syl |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) → 𝑅 ∈ ( Base ‘ 𝐾 ) ) |
12 |
6 1
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑅 ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ∈ ( Base ‘ 𝐾 ) ) |
13 |
5 8 11 12
|
syl3anc |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) → ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ∈ ( Base ‘ 𝐾 ) ) |
14 |
|
eqid |
⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) |
15 |
6 14
|
latref |
⊢ ( ( 𝐾 ∈ Lat ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ( le ‘ 𝐾 ) ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) |
16 |
5 13 15
|
syl2anc |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) → ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ( le ‘ 𝐾 ) ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) |
17 |
14 1 2 3
|
lvolnle3at |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ∈ 𝑉 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) → ¬ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ( le ‘ 𝐾 ) ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) |
18 |
17
|
an32s |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ∈ 𝑉 ) → ¬ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ( le ‘ 𝐾 ) ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) |
19 |
18
|
ex |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) → ( ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ∈ 𝑉 → ¬ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ( le ‘ 𝐾 ) ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ) |
20 |
16 19
|
mt2d |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) → ¬ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ∈ 𝑉 ) |