Metamath Proof Explorer


Theorem 3atnelvolN

Description: The join of 3 atoms is not a lattice volume. (Contributed by NM, 17-Jul-2012) (New usage is discouraged.)

Ref Expression
Hypotheses 3atnelvol.j = ( join ‘ 𝐾 )
3atnelvol.a 𝐴 = ( Atoms ‘ 𝐾 )
3atnelvol.v 𝑉 = ( LVols ‘ 𝐾 )
Assertion 3atnelvolN ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ) → ¬ ( ( 𝑃 𝑄 ) 𝑅 ) ∈ 𝑉 )

Proof

Step Hyp Ref Expression
1 3atnelvol.j = ( join ‘ 𝐾 )
2 3atnelvol.a 𝐴 = ( Atoms ‘ 𝐾 )
3 3atnelvol.v 𝑉 = ( LVols ‘ 𝐾 )
4 hllat ( 𝐾 ∈ HL → 𝐾 ∈ Lat )
5 4 adantr ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ) → 𝐾 ∈ Lat )
6 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
7 6 1 2 hlatjcl ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) → ( 𝑃 𝑄 ) ∈ ( Base ‘ 𝐾 ) )
8 7 3adant3r3 ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ) → ( 𝑃 𝑄 ) ∈ ( Base ‘ 𝐾 ) )
9 simpr3 ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ) → 𝑅𝐴 )
10 6 2 atbase ( 𝑅𝐴𝑅 ∈ ( Base ‘ 𝐾 ) )
11 9 10 syl ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ) → 𝑅 ∈ ( Base ‘ 𝐾 ) )
12 6 1 latjcl ( ( 𝐾 ∈ Lat ∧ ( 𝑃 𝑄 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑅 ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑃 𝑄 ) 𝑅 ) ∈ ( Base ‘ 𝐾 ) )
13 5 8 11 12 syl3anc ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ) → ( ( 𝑃 𝑄 ) 𝑅 ) ∈ ( Base ‘ 𝐾 ) )
14 eqid ( le ‘ 𝐾 ) = ( le ‘ 𝐾 )
15 6 14 latref ( ( 𝐾 ∈ Lat ∧ ( ( 𝑃 𝑄 ) 𝑅 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑃 𝑄 ) 𝑅 ) ( le ‘ 𝐾 ) ( ( 𝑃 𝑄 ) 𝑅 ) )
16 5 13 15 syl2anc ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ) → ( ( 𝑃 𝑄 ) 𝑅 ) ( le ‘ 𝐾 ) ( ( 𝑃 𝑄 ) 𝑅 ) )
17 14 1 2 3 lvolnle3at ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑄 ) 𝑅 ) ∈ 𝑉 ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ) → ¬ ( ( 𝑃 𝑄 ) 𝑅 ) ( le ‘ 𝐾 ) ( ( 𝑃 𝑄 ) 𝑅 ) )
18 17 an32s ( ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ) ∧ ( ( 𝑃 𝑄 ) 𝑅 ) ∈ 𝑉 ) → ¬ ( ( 𝑃 𝑄 ) 𝑅 ) ( le ‘ 𝐾 ) ( ( 𝑃 𝑄 ) 𝑅 ) )
19 18 ex ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ) → ( ( ( 𝑃 𝑄 ) 𝑅 ) ∈ 𝑉 → ¬ ( ( 𝑃 𝑄 ) 𝑅 ) ( le ‘ 𝐾 ) ( ( 𝑃 𝑄 ) 𝑅 ) ) )
20 16 19 mt2d ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ) → ¬ ( ( 𝑃 𝑄 ) 𝑅 ) ∈ 𝑉 )