Metamath Proof Explorer


Theorem 3bior1fand

Description: A disjunction is equivalent to a threefold disjunction with single falsehood of a conjunction. (Contributed by Alexander van der Vekens, 8-Sep-2017)

Ref Expression
Hypothesis 3biorfd.1 ( 𝜑 → ¬ 𝜃 )
Assertion 3bior1fand ( 𝜑 → ( ( 𝜒𝜓 ) ↔ ( ( 𝜃𝜏 ) ∨ 𝜒𝜓 ) ) )

Proof

Step Hyp Ref Expression
1 3biorfd.1 ( 𝜑 → ¬ 𝜃 )
2 1 intnanrd ( 𝜑 → ¬ ( 𝜃𝜏 ) )
3 2 3bior1fd ( 𝜑 → ( ( 𝜒𝜓 ) ↔ ( ( 𝜃𝜏 ) ∨ 𝜒𝜓 ) ) )