Description: A disjunction is equivalent to a threefold disjunction with single falsehood, analogous to biorf . (Contributed by Alexander van der Vekens, 8-Sep-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | 3biorfd.1 | ⊢ ( 𝜑 → ¬ 𝜃 ) | |
| Assertion | 3bior1fd | ⊢ ( 𝜑 → ( ( 𝜒 ∨ 𝜓 ) ↔ ( 𝜃 ∨ 𝜒 ∨ 𝜓 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3biorfd.1 | ⊢ ( 𝜑 → ¬ 𝜃 ) | |
| 2 | biorf | ⊢ ( ¬ 𝜃 → ( ( 𝜒 ∨ 𝜓 ) ↔ ( 𝜃 ∨ ( 𝜒 ∨ 𝜓 ) ) ) ) | |
| 3 | 1 2 | syl | ⊢ ( 𝜑 → ( ( 𝜒 ∨ 𝜓 ) ↔ ( 𝜃 ∨ ( 𝜒 ∨ 𝜓 ) ) ) ) |
| 4 | 3orass | ⊢ ( ( 𝜃 ∨ 𝜒 ∨ 𝜓 ) ↔ ( 𝜃 ∨ ( 𝜒 ∨ 𝜓 ) ) ) | |
| 5 | 3 4 | bitr4di | ⊢ ( 𝜑 → ( ( 𝜒 ∨ 𝜓 ) ↔ ( 𝜃 ∨ 𝜒 ∨ 𝜓 ) ) ) |