Metamath Proof Explorer


Theorem 3bior2fd

Description: A wff is equivalent to its threefold disjunction with double falsehood, analogous to biorf . (Contributed by Alexander van der Vekens, 8-Sep-2017)

Ref Expression
Hypotheses 3biorfd.1 ( 𝜑 → ¬ 𝜃 )
3biorfd.2 ( 𝜑 → ¬ 𝜒 )
Assertion 3bior2fd ( 𝜑 → ( 𝜓 ↔ ( 𝜃𝜒𝜓 ) ) )

Proof

Step Hyp Ref Expression
1 3biorfd.1 ( 𝜑 → ¬ 𝜃 )
2 3biorfd.2 ( 𝜑 → ¬ 𝜒 )
3 biorf ( ¬ 𝜒 → ( 𝜓 ↔ ( 𝜒𝜓 ) ) )
4 2 3 syl ( 𝜑 → ( 𝜓 ↔ ( 𝜒𝜓 ) ) )
5 1 3bior1fd ( 𝜑 → ( ( 𝜒𝜓 ) ↔ ( 𝜃𝜒𝜓 ) ) )
6 4 5 bitrd ( 𝜑 → ( 𝜓 ↔ ( 𝜃𝜒𝜓 ) ) )