Metamath Proof Explorer
Description: Deduction from transitivity of biconditional. (Contributed by NM, 4-Aug-2006)
|
|
Ref |
Expression |
|
Hypotheses |
3bitr2d.1 |
⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) |
|
|
3bitr2d.2 |
⊢ ( 𝜑 → ( 𝜃 ↔ 𝜒 ) ) |
|
|
3bitr2d.3 |
⊢ ( 𝜑 → ( 𝜃 ↔ 𝜏 ) ) |
|
Assertion |
3bitr2d |
⊢ ( 𝜑 → ( 𝜓 ↔ 𝜏 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
3bitr2d.1 |
⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) |
2 |
|
3bitr2d.2 |
⊢ ( 𝜑 → ( 𝜃 ↔ 𝜒 ) ) |
3 |
|
3bitr2d.3 |
⊢ ( 𝜑 → ( 𝜃 ↔ 𝜏 ) ) |
4 |
1 2
|
bitr4d |
⊢ ( 𝜑 → ( 𝜓 ↔ 𝜃 ) ) |
5 |
4 3
|
bitrd |
⊢ ( 𝜑 → ( 𝜓 ↔ 𝜏 ) ) |