Metamath Proof Explorer
Description: A chained inference from transitive law for logical equivalence.
(Contributed by NM, 4-Aug-2006)
|
|
Ref |
Expression |
|
Hypotheses |
3bitr2i.1 |
⊢ ( 𝜑 ↔ 𝜓 ) |
|
|
3bitr2i.2 |
⊢ ( 𝜒 ↔ 𝜓 ) |
|
|
3bitr2i.3 |
⊢ ( 𝜒 ↔ 𝜃 ) |
|
Assertion |
3bitr2i |
⊢ ( 𝜑 ↔ 𝜃 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
3bitr2i.1 |
⊢ ( 𝜑 ↔ 𝜓 ) |
2 |
|
3bitr2i.2 |
⊢ ( 𝜒 ↔ 𝜓 ) |
3 |
|
3bitr2i.3 |
⊢ ( 𝜒 ↔ 𝜃 ) |
4 |
1 2
|
bitr4i |
⊢ ( 𝜑 ↔ 𝜒 ) |
5 |
4 3
|
bitri |
⊢ ( 𝜑 ↔ 𝜃 ) |