Metamath Proof Explorer
Description: More general version of 3bitr3i . Useful for converting definitions
in a formula. (Contributed by NM, 4-Jun-1995)
|
|
Ref |
Expression |
|
Hypotheses |
3bitr3g.1 |
⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) |
|
|
3bitr3g.2 |
⊢ ( 𝜓 ↔ 𝜃 ) |
|
|
3bitr3g.3 |
⊢ ( 𝜒 ↔ 𝜏 ) |
|
Assertion |
3bitr3g |
⊢ ( 𝜑 → ( 𝜃 ↔ 𝜏 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
3bitr3g.1 |
⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) |
2 |
|
3bitr3g.2 |
⊢ ( 𝜓 ↔ 𝜃 ) |
3 |
|
3bitr3g.3 |
⊢ ( 𝜒 ↔ 𝜏 ) |
4 |
2 1
|
bitr3id |
⊢ ( 𝜑 → ( 𝜃 ↔ 𝜒 ) ) |
5 |
4 3
|
bitrdi |
⊢ ( 𝜑 → ( 𝜃 ↔ 𝜏 ) ) |