Metamath Proof Explorer
Description: A chained inference from transitive law for logical equivalence.
(Contributed by NM, 21-Jun-1993)
|
|
Ref |
Expression |
|
Hypotheses |
3bitr3i.1 |
⊢ ( 𝜑 ↔ 𝜓 ) |
|
|
3bitr3i.2 |
⊢ ( 𝜑 ↔ 𝜒 ) |
|
|
3bitr3i.3 |
⊢ ( 𝜓 ↔ 𝜃 ) |
|
Assertion |
3bitr3ri |
⊢ ( 𝜃 ↔ 𝜒 ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
3bitr3i.1 |
⊢ ( 𝜑 ↔ 𝜓 ) |
| 2 |
|
3bitr3i.2 |
⊢ ( 𝜑 ↔ 𝜒 ) |
| 3 |
|
3bitr3i.3 |
⊢ ( 𝜓 ↔ 𝜃 ) |
| 4 |
1 2
|
bitr3i |
⊢ ( 𝜓 ↔ 𝜒 ) |
| 5 |
3 4
|
bitr3i |
⊢ ( 𝜃 ↔ 𝜒 ) |