Metamath Proof Explorer
Description: More general version of 3bitr4i . Useful for converting definitions
in a formula. (Contributed by NM, 11-May-1993)
|
|
Ref |
Expression |
|
Hypotheses |
3bitr4g.1 |
⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) |
|
|
3bitr4g.2 |
⊢ ( 𝜃 ↔ 𝜓 ) |
|
|
3bitr4g.3 |
⊢ ( 𝜏 ↔ 𝜒 ) |
|
Assertion |
3bitr4g |
⊢ ( 𝜑 → ( 𝜃 ↔ 𝜏 ) ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
3bitr4g.1 |
⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) |
| 2 |
|
3bitr4g.2 |
⊢ ( 𝜃 ↔ 𝜓 ) |
| 3 |
|
3bitr4g.3 |
⊢ ( 𝜏 ↔ 𝜒 ) |
| 4 |
2 1
|
bitrid |
⊢ ( 𝜑 → ( 𝜃 ↔ 𝜒 ) ) |
| 5 |
4 3
|
bitr4di |
⊢ ( 𝜑 → ( 𝜃 ↔ 𝜏 ) ) |