Metamath Proof Explorer


Theorem 3bitr4rd

Description: Deduction from transitivity of biconditional. (Contributed by NM, 4-Aug-2006)

Ref Expression
Hypotheses 3bitr4d.1 ( 𝜑 → ( 𝜓𝜒 ) )
3bitr4d.2 ( 𝜑 → ( 𝜃𝜓 ) )
3bitr4d.3 ( 𝜑 → ( 𝜏𝜒 ) )
Assertion 3bitr4rd ( 𝜑 → ( 𝜏𝜃 ) )

Proof

Step Hyp Ref Expression
1 3bitr4d.1 ( 𝜑 → ( 𝜓𝜒 ) )
2 3bitr4d.2 ( 𝜑 → ( 𝜃𝜓 ) )
3 3bitr4d.3 ( 𝜑 → ( 𝜏𝜒 ) )
4 3 1 bitr4d ( 𝜑 → ( 𝜏𝜓 ) )
5 4 2 bitr4d ( 𝜑 → ( 𝜏𝜃 ) )