Metamath Proof Explorer
Description: Deduction from transitivity of biconditional. (Contributed by NM, 4-Aug-2006)
|
|
Ref |
Expression |
|
Hypotheses |
3bitr4d.1 |
⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) |
|
|
3bitr4d.2 |
⊢ ( 𝜑 → ( 𝜃 ↔ 𝜓 ) ) |
|
|
3bitr4d.3 |
⊢ ( 𝜑 → ( 𝜏 ↔ 𝜒 ) ) |
|
Assertion |
3bitr4rd |
⊢ ( 𝜑 → ( 𝜏 ↔ 𝜃 ) ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
3bitr4d.1 |
⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) |
| 2 |
|
3bitr4d.2 |
⊢ ( 𝜑 → ( 𝜃 ↔ 𝜓 ) ) |
| 3 |
|
3bitr4d.3 |
⊢ ( 𝜑 → ( 𝜏 ↔ 𝜒 ) ) |
| 4 |
3 1
|
bitr4d |
⊢ ( 𝜑 → ( 𝜏 ↔ 𝜓 ) ) |
| 5 |
4 2
|
bitr4d |
⊢ ( 𝜑 → ( 𝜏 ↔ 𝜃 ) ) |