Metamath Proof Explorer


Theorem 3bitrd

Description: Deduction from transitivity of biconditional. (Contributed by NM, 13-Aug-1999)

Ref Expression
Hypotheses 3bitrd.1 ( 𝜑 → ( 𝜓𝜒 ) )
3bitrd.2 ( 𝜑 → ( 𝜒𝜃 ) )
3bitrd.3 ( 𝜑 → ( 𝜃𝜏 ) )
Assertion 3bitrd ( 𝜑 → ( 𝜓𝜏 ) )

Proof

Step Hyp Ref Expression
1 3bitrd.1 ( 𝜑 → ( 𝜓𝜒 ) )
2 3bitrd.2 ( 𝜑 → ( 𝜒𝜃 ) )
3 3bitrd.3 ( 𝜑 → ( 𝜃𝜏 ) )
4 1 2 bitrd ( 𝜑 → ( 𝜓𝜃 ) )
5 4 3 bitrd ( 𝜑 → ( 𝜓𝜏 ) )