Metamath Proof Explorer
Description: Deduction from transitivity of biconditional. (Contributed by NM, 13-Aug-1999)
|
|
Ref |
Expression |
|
Hypotheses |
3bitrd.1 |
⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) |
|
|
3bitrd.2 |
⊢ ( 𝜑 → ( 𝜒 ↔ 𝜃 ) ) |
|
|
3bitrd.3 |
⊢ ( 𝜑 → ( 𝜃 ↔ 𝜏 ) ) |
|
Assertion |
3bitrd |
⊢ ( 𝜑 → ( 𝜓 ↔ 𝜏 ) ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
3bitrd.1 |
⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) |
| 2 |
|
3bitrd.2 |
⊢ ( 𝜑 → ( 𝜒 ↔ 𝜃 ) ) |
| 3 |
|
3bitrd.3 |
⊢ ( 𝜑 → ( 𝜃 ↔ 𝜏 ) ) |
| 4 |
1 2
|
bitrd |
⊢ ( 𝜑 → ( 𝜓 ↔ 𝜃 ) ) |
| 5 |
4 3
|
bitrd |
⊢ ( 𝜑 → ( 𝜓 ↔ 𝜏 ) ) |