Metamath Proof Explorer


Theorem 3bitrrd

Description: Deduction from transitivity of biconditional. (Contributed by NM, 4-Aug-2006)

Ref Expression
Hypotheses 3bitrd.1 ( 𝜑 → ( 𝜓𝜒 ) )
3bitrd.2 ( 𝜑 → ( 𝜒𝜃 ) )
3bitrd.3 ( 𝜑 → ( 𝜃𝜏 ) )
Assertion 3bitrrd ( 𝜑 → ( 𝜏𝜓 ) )

Proof

Step Hyp Ref Expression
1 3bitrd.1 ( 𝜑 → ( 𝜓𝜒 ) )
2 3bitrd.2 ( 𝜑 → ( 𝜒𝜃 ) )
3 3bitrd.3 ( 𝜑 → ( 𝜃𝜏 ) )
4 1 2 bitr2d ( 𝜑 → ( 𝜃𝜓 ) )
5 3 4 bitr3d ( 𝜑 → ( 𝜏𝜓 ) )