Metamath Proof Explorer


Theorem 3brtr3g

Description: Substitution of equality into both sides of a binary relation. (Contributed by NM, 16-Jan-1997)

Ref Expression
Hypotheses 3brtr3g.1 ( 𝜑𝐴 𝑅 𝐵 )
3brtr3g.2 𝐴 = 𝐶
3brtr3g.3 𝐵 = 𝐷
Assertion 3brtr3g ( 𝜑𝐶 𝑅 𝐷 )

Proof

Step Hyp Ref Expression
1 3brtr3g.1 ( 𝜑𝐴 𝑅 𝐵 )
2 3brtr3g.2 𝐴 = 𝐶
3 3brtr3g.3 𝐵 = 𝐷
4 2 3 breq12i ( 𝐴 𝑅 𝐵𝐶 𝑅 𝐷 )
5 1 4 sylib ( 𝜑𝐶 𝑅 𝐷 )