Metamath Proof Explorer


Theorem 3brtr3i

Description: Substitution of equality into both sides of a binary relation. (Contributed by NM, 11-Aug-1999)

Ref Expression
Hypotheses 3brtr3.1 𝐴 𝑅 𝐵
3brtr3.2 𝐴 = 𝐶
3brtr3.3 𝐵 = 𝐷
Assertion 3brtr3i 𝐶 𝑅 𝐷

Proof

Step Hyp Ref Expression
1 3brtr3.1 𝐴 𝑅 𝐵
2 3brtr3.2 𝐴 = 𝐶
3 3brtr3.3 𝐵 = 𝐷
4 2 1 eqbrtrri 𝐶 𝑅 𝐵
5 4 3 breqtri 𝐶 𝑅 𝐷