Metamath Proof Explorer
Description: Substitution of equality into both sides of a binary relation.
(Contributed by NM, 21-Feb-2005)
|
|
Ref |
Expression |
|
Hypotheses |
3brtr4d.1 |
⊢ ( 𝜑 → 𝐴 𝑅 𝐵 ) |
|
|
3brtr4d.2 |
⊢ ( 𝜑 → 𝐶 = 𝐴 ) |
|
|
3brtr4d.3 |
⊢ ( 𝜑 → 𝐷 = 𝐵 ) |
|
Assertion |
3brtr4d |
⊢ ( 𝜑 → 𝐶 𝑅 𝐷 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
3brtr4d.1 |
⊢ ( 𝜑 → 𝐴 𝑅 𝐵 ) |
2 |
|
3brtr4d.2 |
⊢ ( 𝜑 → 𝐶 = 𝐴 ) |
3 |
|
3brtr4d.3 |
⊢ ( 𝜑 → 𝐷 = 𝐵 ) |
4 |
2 3
|
breq12d |
⊢ ( 𝜑 → ( 𝐶 𝑅 𝐷 ↔ 𝐴 𝑅 𝐵 ) ) |
5 |
1 4
|
mpbird |
⊢ ( 𝜑 → 𝐶 𝑅 𝐷 ) |