Metamath Proof Explorer


Theorem 3brtr4d

Description: Substitution of equality into both sides of a binary relation. (Contributed by NM, 21-Feb-2005)

Ref Expression
Hypotheses 3brtr4d.1 ( 𝜑𝐴 𝑅 𝐵 )
3brtr4d.2 ( 𝜑𝐶 = 𝐴 )
3brtr4d.3 ( 𝜑𝐷 = 𝐵 )
Assertion 3brtr4d ( 𝜑𝐶 𝑅 𝐷 )

Proof

Step Hyp Ref Expression
1 3brtr4d.1 ( 𝜑𝐴 𝑅 𝐵 )
2 3brtr4d.2 ( 𝜑𝐶 = 𝐴 )
3 3brtr4d.3 ( 𝜑𝐷 = 𝐵 )
4 2 3 breq12d ( 𝜑 → ( 𝐶 𝑅 𝐷𝐴 𝑅 𝐵 ) )
5 1 4 mpbird ( 𝜑𝐶 𝑅 𝐷 )