Metamath Proof Explorer


Theorem 3brtr4g

Description: Substitution of equality into both sides of a binary relation. (Contributed by NM, 16-Jan-1997)

Ref Expression
Hypotheses 3brtr4g.1 ( 𝜑𝐴 𝑅 𝐵 )
3brtr4g.2 𝐶 = 𝐴
3brtr4g.3 𝐷 = 𝐵
Assertion 3brtr4g ( 𝜑𝐶 𝑅 𝐷 )

Proof

Step Hyp Ref Expression
1 3brtr4g.1 ( 𝜑𝐴 𝑅 𝐵 )
2 3brtr4g.2 𝐶 = 𝐴
3 3brtr4g.3 𝐷 = 𝐵
4 2 3 breq12i ( 𝐶 𝑅 𝐷𝐴 𝑅 𝐵 )
5 1 4 sylibr ( 𝜑𝐶 𝑅 𝐷 )