Metamath Proof Explorer


Theorem 3brtr4i

Description: Substitution of equality into both sides of a binary relation. (Contributed by NM, 11-Aug-1999)

Ref Expression
Hypotheses 3brtr4.1 𝐴 𝑅 𝐵
3brtr4.2 𝐶 = 𝐴
3brtr4.3 𝐷 = 𝐵
Assertion 3brtr4i 𝐶 𝑅 𝐷

Proof

Step Hyp Ref Expression
1 3brtr4.1 𝐴 𝑅 𝐵
2 3brtr4.2 𝐶 = 𝐴
3 3brtr4.3 𝐷 = 𝐵
4 2 1 eqbrtri 𝐶 𝑅 𝐵
5 4 3 breqtrri 𝐶 𝑅 𝐷