| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 3cubeslem1.a | ⊢ ( 𝜑  →  𝐴  ∈  ℚ ) | 
						
							| 2 |  | qre | ⊢ ( 𝐴  ∈  ℚ  →  𝐴  ∈  ℝ ) | 
						
							| 3 | 1 2 | syl | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 4 |  | 0red | ⊢ ( 𝜑  →  0  ∈  ℝ ) | 
						
							| 5 | 3 4 | lttri4d | ⊢ ( 𝜑  →  ( 𝐴  <  0  ∨  𝐴  =  0  ∨  0  <  𝐴 ) ) | 
						
							| 6 |  | simpl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐴  <  0 )  →  𝐴  ∈  ℝ ) | 
						
							| 7 |  | 0red | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐴  <  0 )  →  0  ∈  ℝ ) | 
						
							| 8 |  | peano2re | ⊢ ( 𝐴  ∈  ℝ  →  ( 𝐴  +  1 )  ∈  ℝ ) | 
						
							| 9 | 8 | adantr | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐴  <  0 )  →  ( 𝐴  +  1 )  ∈  ℝ ) | 
						
							| 10 | 9 | resqcld | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐴  <  0 )  →  ( ( 𝐴  +  1 ) ↑ 2 )  ∈  ℝ ) | 
						
							| 11 |  | simpr | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐴  <  0 )  →  𝐴  <  0 ) | 
						
							| 12 | 9 | sqge0d | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐴  <  0 )  →  0  ≤  ( ( 𝐴  +  1 ) ↑ 2 ) ) | 
						
							| 13 | 6 7 10 11 12 | ltletrd | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐴  <  0 )  →  𝐴  <  ( ( 𝐴  +  1 ) ↑ 2 ) ) | 
						
							| 14 | 13 | a1i | ⊢ ( 𝜑  →  ( ( 𝐴  ∈  ℝ  ∧  𝐴  <  0 )  →  𝐴  <  ( ( 𝐴  +  1 ) ↑ 2 ) ) ) | 
						
							| 15 | 3 14 | mpand | ⊢ ( 𝜑  →  ( 𝐴  <  0  →  𝐴  <  ( ( 𝐴  +  1 ) ↑ 2 ) ) ) | 
						
							| 16 |  | 0lt1 | ⊢ 0  <  1 | 
						
							| 17 | 16 | a1i | ⊢ ( 𝐴  =  0  →  0  <  1 ) | 
						
							| 18 |  | id | ⊢ ( 𝐴  =  0  →  𝐴  =  0 ) | 
						
							| 19 |  | sq1 | ⊢ ( 1 ↑ 2 )  =  1 | 
						
							| 20 | 19 | a1i | ⊢ ( 𝐴  =  0  →  ( 1 ↑ 2 )  =  1 ) | 
						
							| 21 | 17 18 20 | 3brtr4d | ⊢ ( 𝐴  =  0  →  𝐴  <  ( 1 ↑ 2 ) ) | 
						
							| 22 |  | 0cnd | ⊢ ( 𝐴  =  0  →  0  ∈  ℂ ) | 
						
							| 23 |  | 1cnd | ⊢ ( 𝐴  =  0  →  1  ∈  ℂ ) | 
						
							| 24 | 18 | oveq1d | ⊢ ( 𝐴  =  0  →  ( 𝐴  +  1 )  =  ( 0  +  1 ) ) | 
						
							| 25 | 22 23 24 | comraddd | ⊢ ( 𝐴  =  0  →  ( 𝐴  +  1 )  =  ( 1  +  0 ) ) | 
						
							| 26 |  | 1p0e1 | ⊢ ( 1  +  0 )  =  1 | 
						
							| 27 | 25 26 | eqtrdi | ⊢ ( 𝐴  =  0  →  ( 𝐴  +  1 )  =  1 ) | 
						
							| 28 | 27 | oveq1d | ⊢ ( 𝐴  =  0  →  ( ( 𝐴  +  1 ) ↑ 2 )  =  ( 1 ↑ 2 ) ) | 
						
							| 29 | 21 28 | breqtrrd | ⊢ ( 𝐴  =  0  →  𝐴  <  ( ( 𝐴  +  1 ) ↑ 2 ) ) | 
						
							| 30 | 29 | a1i | ⊢ ( 𝜑  →  ( 𝐴  =  0  →  𝐴  <  ( ( 𝐴  +  1 ) ↑ 2 ) ) ) | 
						
							| 31 |  | ax-1rid | ⊢ ( 𝐴  ∈  ℝ  →  ( 𝐴  ·  1 )  =  𝐴 ) | 
						
							| 32 | 31 | adantr | ⊢ ( ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 )  →  ( 𝐴  ·  1 )  =  𝐴 ) | 
						
							| 33 |  | simpl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 )  →  𝐴  ∈  ℝ ) | 
						
							| 34 |  | 1red | ⊢ ( ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 )  →  1  ∈  ℝ ) | 
						
							| 35 | 33 34 | readdcld | ⊢ ( ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 )  →  ( 𝐴  +  1 )  ∈  ℝ ) | 
						
							| 36 |  | simpr | ⊢ ( ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 )  →  0  <  𝐴 ) | 
						
							| 37 |  | 0red | ⊢ ( ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 )  →  0  ∈  ℝ ) | 
						
							| 38 |  | ltle | ⊢ ( ( 0  ∈  ℝ  ∧  𝐴  ∈  ℝ )  →  ( 0  <  𝐴  →  0  ≤  𝐴 ) ) | 
						
							| 39 | 37 33 38 | syl2anc | ⊢ ( ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 )  →  ( 0  <  𝐴  →  0  ≤  𝐴 ) ) | 
						
							| 40 | 33 | ltp1d | ⊢ ( ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 )  →  𝐴  <  ( 𝐴  +  1 ) ) | 
						
							| 41 | 39 40 | jctird | ⊢ ( ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 )  →  ( 0  <  𝐴  →  ( 0  ≤  𝐴  ∧  𝐴  <  ( 𝐴  +  1 ) ) ) ) | 
						
							| 42 | 36 41 | mpd | ⊢ ( ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 )  →  ( 0  ≤  𝐴  ∧  𝐴  <  ( 𝐴  +  1 ) ) ) | 
						
							| 43 | 34 35 | jca | ⊢ ( ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 )  →  ( 1  ∈  ℝ  ∧  ( 𝐴  +  1 )  ∈  ℝ ) ) | 
						
							| 44 |  | 0le1 | ⊢ 0  ≤  1 | 
						
							| 45 | 44 | a1i | ⊢ ( ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 )  →  0  ≤  1 ) | 
						
							| 46 |  | 1e0p1 | ⊢ 1  =  ( 0  +  1 ) | 
						
							| 47 | 37 33 34 36 | ltadd1dd | ⊢ ( ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 )  →  ( 0  +  1 )  <  ( 𝐴  +  1 ) ) | 
						
							| 48 | 46 47 | eqbrtrid | ⊢ ( ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 )  →  1  <  ( 𝐴  +  1 ) ) | 
						
							| 49 | 43 45 48 | jca32 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 )  →  ( ( 1  ∈  ℝ  ∧  ( 𝐴  +  1 )  ∈  ℝ )  ∧  ( 0  ≤  1  ∧  1  <  ( 𝐴  +  1 ) ) ) ) | 
						
							| 50 |  | ltmul12a | ⊢ ( ( ( ( 𝐴  ∈  ℝ  ∧  ( 𝐴  +  1 )  ∈  ℝ )  ∧  ( 0  ≤  𝐴  ∧  𝐴  <  ( 𝐴  +  1 ) ) )  ∧  ( ( 1  ∈  ℝ  ∧  ( 𝐴  +  1 )  ∈  ℝ )  ∧  ( 0  ≤  1  ∧  1  <  ( 𝐴  +  1 ) ) ) )  →  ( 𝐴  ·  1 )  <  ( ( 𝐴  +  1 )  ·  ( 𝐴  +  1 ) ) ) | 
						
							| 51 | 33 35 42 49 50 | syl1111anc | ⊢ ( ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 )  →  ( 𝐴  ·  1 )  <  ( ( 𝐴  +  1 )  ·  ( 𝐴  +  1 ) ) ) | 
						
							| 52 | 32 51 | eqbrtrrd | ⊢ ( ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 )  →  𝐴  <  ( ( 𝐴  +  1 )  ·  ( 𝐴  +  1 ) ) ) | 
						
							| 53 | 35 | recnd | ⊢ ( ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 )  →  ( 𝐴  +  1 )  ∈  ℂ ) | 
						
							| 54 | 53 | sqvald | ⊢ ( ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 )  →  ( ( 𝐴  +  1 ) ↑ 2 )  =  ( ( 𝐴  +  1 )  ·  ( 𝐴  +  1 ) ) ) | 
						
							| 55 | 52 54 | breqtrrd | ⊢ ( ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 )  →  𝐴  <  ( ( 𝐴  +  1 ) ↑ 2 ) ) | 
						
							| 56 | 55 | a1i | ⊢ ( 𝜑  →  ( ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 )  →  𝐴  <  ( ( 𝐴  +  1 ) ↑ 2 ) ) ) | 
						
							| 57 | 3 56 | mpand | ⊢ ( 𝜑  →  ( 0  <  𝐴  →  𝐴  <  ( ( 𝐴  +  1 ) ↑ 2 ) ) ) | 
						
							| 58 | 15 30 57 | 3jaod | ⊢ ( 𝜑  →  ( ( 𝐴  <  0  ∨  𝐴  =  0  ∨  0  <  𝐴 )  →  𝐴  <  ( ( 𝐴  +  1 ) ↑ 2 ) ) ) | 
						
							| 59 | 5 58 | mpd | ⊢ ( 𝜑  →  𝐴  <  ( ( 𝐴  +  1 ) ↑ 2 ) ) | 
						
							| 60 | 3 8 | syl | ⊢ ( 𝜑  →  ( 𝐴  +  1 )  ∈  ℝ ) | 
						
							| 61 | 60 | resqcld | ⊢ ( 𝜑  →  ( ( 𝐴  +  1 ) ↑ 2 )  ∈  ℝ ) | 
						
							| 62 | 3 61 | posdifd | ⊢ ( 𝜑  →  ( 𝐴  <  ( ( 𝐴  +  1 ) ↑ 2 )  ↔  0  <  ( ( ( 𝐴  +  1 ) ↑ 2 )  −  𝐴 ) ) ) | 
						
							| 63 | 59 62 | mpbid | ⊢ ( 𝜑  →  0  <  ( ( ( 𝐴  +  1 ) ↑ 2 )  −  𝐴 ) ) |