Step |
Hyp |
Ref |
Expression |
1 |
|
3wlkd.p |
⊢ 𝑃 = 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 |
2 |
|
3wlkd.f |
⊢ 𝐹 = 〈“ 𝐽 𝐾 𝐿 ”〉 |
3 |
|
3wlkd.s |
⊢ ( 𝜑 → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) ) |
4 |
|
3wlkd.n |
⊢ ( 𝜑 → ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ) ∧ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ) ∧ 𝐶 ≠ 𝐷 ) ) |
5 |
|
3wlkd.e |
⊢ ( 𝜑 → ( { 𝐴 , 𝐵 } ⊆ ( 𝐼 ‘ 𝐽 ) ∧ { 𝐵 , 𝐶 } ⊆ ( 𝐼 ‘ 𝐾 ) ∧ { 𝐶 , 𝐷 } ⊆ ( 𝐼 ‘ 𝐿 ) ) ) |
6 |
|
3wlkd.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
7 |
|
3wlkd.i |
⊢ 𝐼 = ( iEdg ‘ 𝐺 ) |
8 |
|
3trld.n |
⊢ ( 𝜑 → ( 𝐽 ≠ 𝐾 ∧ 𝐽 ≠ 𝐿 ∧ 𝐾 ≠ 𝐿 ) ) |
9 |
|
3cycld.e |
⊢ ( 𝜑 → 𝐴 = 𝐷 ) |
10 |
1 2 3 4 5 6 7 8
|
3pthd |
⊢ ( 𝜑 → 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) |
11 |
1
|
fveq1i |
⊢ ( 𝑃 ‘ 0 ) = ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 0 ) |
12 |
|
s4fv0 |
⊢ ( 𝐴 ∈ 𝑉 → ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 0 ) = 𝐴 ) |
13 |
11 12
|
syl5eq |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝑃 ‘ 0 ) = 𝐴 ) |
14 |
13
|
ad3antrrr |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) ∧ 𝐴 = 𝐷 ) → ( 𝑃 ‘ 0 ) = 𝐴 ) |
15 |
|
simpr |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) ∧ 𝐴 = 𝐷 ) → 𝐴 = 𝐷 ) |
16 |
2
|
fveq2i |
⊢ ( ♯ ‘ 𝐹 ) = ( ♯ ‘ 〈“ 𝐽 𝐾 𝐿 ”〉 ) |
17 |
|
s3len |
⊢ ( ♯ ‘ 〈“ 𝐽 𝐾 𝐿 ”〉 ) = 3 |
18 |
16 17
|
eqtri |
⊢ ( ♯ ‘ 𝐹 ) = 3 |
19 |
1 18
|
fveq12i |
⊢ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 3 ) |
20 |
|
s4fv3 |
⊢ ( 𝐷 ∈ 𝑉 → ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 3 ) = 𝐷 ) |
21 |
19 20
|
eqtr2id |
⊢ ( 𝐷 ∈ 𝑉 → 𝐷 = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) |
22 |
21
|
adantl |
⊢ ( ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) → 𝐷 = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) |
23 |
22
|
ad2antlr |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) ∧ 𝐴 = 𝐷 ) → 𝐷 = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) |
24 |
14 15 23
|
3eqtrd |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) ∧ 𝐴 = 𝐷 ) → ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) |
25 |
3 9 24
|
syl2anc |
⊢ ( 𝜑 → ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) |
26 |
|
iscycl |
⊢ ( 𝐹 ( Cycles ‘ 𝐺 ) 𝑃 ↔ ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) ) |
27 |
10 25 26
|
sylanbrc |
⊢ ( 𝜑 → 𝐹 ( Cycles ‘ 𝐺 ) 𝑃 ) |