| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 3cyclfrgr.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | eqid | ⊢ ( Edg ‘ 𝐺 )  =  ( Edg ‘ 𝐺 ) | 
						
							| 3 | 1 2 | 3cyclfrgrrn | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  1  <  ( ♯ ‘ 𝑉 ) )  →  ∀ 𝑣  ∈  𝑉 ∃ 𝑏  ∈  𝑉 ∃ 𝑐  ∈  𝑉 ( { 𝑣 ,  𝑏 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝑏 ,  𝑐 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝑐 ,  𝑣 }  ∈  ( Edg ‘ 𝐺 ) ) ) | 
						
							| 4 |  | frgrusgr | ⊢ ( 𝐺  ∈   FriendGraph   →  𝐺  ∈  USGraph ) | 
						
							| 5 |  | usgrumgr | ⊢ ( 𝐺  ∈  USGraph  →  𝐺  ∈  UMGraph ) | 
						
							| 6 | 4 5 | syl | ⊢ ( 𝐺  ∈   FriendGraph   →  𝐺  ∈  UMGraph ) | 
						
							| 7 | 6 | ad4antr | ⊢ ( ( ( ( ( 𝐺  ∈   FriendGraph   ∧  1  <  ( ♯ ‘ 𝑉 ) )  ∧  𝑣  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  ∧  ( { 𝑣 ,  𝑏 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝑏 ,  𝑐 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝑐 ,  𝑣 }  ∈  ( Edg ‘ 𝐺 ) ) )  →  𝐺  ∈  UMGraph ) | 
						
							| 8 |  | simpr | ⊢ ( ( ( 𝐺  ∈   FriendGraph   ∧  1  <  ( ♯ ‘ 𝑉 ) )  ∧  𝑣  ∈  𝑉 )  →  𝑣  ∈  𝑉 ) | 
						
							| 9 | 8 | anim1i | ⊢ ( ( ( ( 𝐺  ∈   FriendGraph   ∧  1  <  ( ♯ ‘ 𝑉 ) )  ∧  𝑣  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  →  ( 𝑣  ∈  𝑉  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) ) ) | 
						
							| 10 |  | 3anass | ⊢ ( ( 𝑣  ∈  𝑉  ∧  𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 )  ↔  ( 𝑣  ∈  𝑉  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) ) ) | 
						
							| 11 | 9 10 | sylibr | ⊢ ( ( ( ( 𝐺  ∈   FriendGraph   ∧  1  <  ( ♯ ‘ 𝑉 ) )  ∧  𝑣  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  →  ( 𝑣  ∈  𝑉  ∧  𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) ) | 
						
							| 12 | 11 | adantr | ⊢ ( ( ( ( ( 𝐺  ∈   FriendGraph   ∧  1  <  ( ♯ ‘ 𝑉 ) )  ∧  𝑣  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  ∧  ( { 𝑣 ,  𝑏 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝑏 ,  𝑐 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝑐 ,  𝑣 }  ∈  ( Edg ‘ 𝐺 ) ) )  →  ( 𝑣  ∈  𝑉  ∧  𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) ) | 
						
							| 13 |  | simpr | ⊢ ( ( ( ( ( 𝐺  ∈   FriendGraph   ∧  1  <  ( ♯ ‘ 𝑉 ) )  ∧  𝑣  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  ∧  ( { 𝑣 ,  𝑏 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝑏 ,  𝑐 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝑐 ,  𝑣 }  ∈  ( Edg ‘ 𝐺 ) ) )  →  ( { 𝑣 ,  𝑏 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝑏 ,  𝑐 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝑐 ,  𝑣 }  ∈  ( Edg ‘ 𝐺 ) ) ) | 
						
							| 14 | 1 2 | umgr3cyclex | ⊢ ( ( 𝐺  ∈  UMGraph  ∧  ( 𝑣  ∈  𝑉  ∧  𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 )  ∧  ( { 𝑣 ,  𝑏 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝑏 ,  𝑐 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝑐 ,  𝑣 }  ∈  ( Edg ‘ 𝐺 ) ) )  →  ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  3  ∧  ( 𝑝 ‘ 0 )  =  𝑣 ) ) | 
						
							| 15 | 7 12 13 14 | syl3anc | ⊢ ( ( ( ( ( 𝐺  ∈   FriendGraph   ∧  1  <  ( ♯ ‘ 𝑉 ) )  ∧  𝑣  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  ∧  ( { 𝑣 ,  𝑏 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝑏 ,  𝑐 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝑐 ,  𝑣 }  ∈  ( Edg ‘ 𝐺 ) ) )  →  ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  3  ∧  ( 𝑝 ‘ 0 )  =  𝑣 ) ) | 
						
							| 16 | 15 | ex | ⊢ ( ( ( ( 𝐺  ∈   FriendGraph   ∧  1  <  ( ♯ ‘ 𝑉 ) )  ∧  𝑣  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  →  ( ( { 𝑣 ,  𝑏 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝑏 ,  𝑐 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝑐 ,  𝑣 }  ∈  ( Edg ‘ 𝐺 ) )  →  ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  3  ∧  ( 𝑝 ‘ 0 )  =  𝑣 ) ) ) | 
						
							| 17 | 16 | rexlimdvva | ⊢ ( ( ( 𝐺  ∈   FriendGraph   ∧  1  <  ( ♯ ‘ 𝑉 ) )  ∧  𝑣  ∈  𝑉 )  →  ( ∃ 𝑏  ∈  𝑉 ∃ 𝑐  ∈  𝑉 ( { 𝑣 ,  𝑏 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝑏 ,  𝑐 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝑐 ,  𝑣 }  ∈  ( Edg ‘ 𝐺 ) )  →  ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  3  ∧  ( 𝑝 ‘ 0 )  =  𝑣 ) ) ) | 
						
							| 18 | 17 | ralimdva | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  1  <  ( ♯ ‘ 𝑉 ) )  →  ( ∀ 𝑣  ∈  𝑉 ∃ 𝑏  ∈  𝑉 ∃ 𝑐  ∈  𝑉 ( { 𝑣 ,  𝑏 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝑏 ,  𝑐 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝑐 ,  𝑣 }  ∈  ( Edg ‘ 𝐺 ) )  →  ∀ 𝑣  ∈  𝑉 ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  3  ∧  ( 𝑝 ‘ 0 )  =  𝑣 ) ) ) | 
						
							| 19 | 3 18 | mpd | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  1  <  ( ♯ ‘ 𝑉 ) )  →  ∀ 𝑣  ∈  𝑉 ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  3  ∧  ( 𝑝 ‘ 0 )  =  𝑣 ) ) |