| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 3cyclfrgrrn1.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | 3cyclfrgrrn1.e | ⊢ 𝐸  =  ( Edg ‘ 𝐺 ) | 
						
							| 3 | 1 2 | 3cyclfrgrrn | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  1  <  ( ♯ ‘ 𝑉 ) )  →  ∀ 𝑎  ∈  𝑉 ∃ 𝑏  ∈  𝑉 ∃ 𝑐  ∈  𝑉 ( { 𝑎 ,  𝑏 }  ∈  𝐸  ∧  { 𝑏 ,  𝑐 }  ∈  𝐸  ∧  { 𝑐 ,  𝑎 }  ∈  𝐸 ) ) | 
						
							| 4 |  | frgrusgr | ⊢ ( 𝐺  ∈   FriendGraph   →  𝐺  ∈  USGraph ) | 
						
							| 5 | 2 | usgredgne | ⊢ ( ( 𝐺  ∈  USGraph  ∧  { 𝑏 ,  𝑐 }  ∈  𝐸 )  →  𝑏  ≠  𝑐 ) | 
						
							| 6 | 5 | expcom | ⊢ ( { 𝑏 ,  𝑐 }  ∈  𝐸  →  ( 𝐺  ∈  USGraph  →  𝑏  ≠  𝑐 ) ) | 
						
							| 7 | 6 | 3ad2ant2 | ⊢ ( ( { 𝑎 ,  𝑏 }  ∈  𝐸  ∧  { 𝑏 ,  𝑐 }  ∈  𝐸  ∧  { 𝑐 ,  𝑎 }  ∈  𝐸 )  →  ( 𝐺  ∈  USGraph  →  𝑏  ≠  𝑐 ) ) | 
						
							| 8 | 4 7 | syl5com | ⊢ ( 𝐺  ∈   FriendGraph   →  ( ( { 𝑎 ,  𝑏 }  ∈  𝐸  ∧  { 𝑏 ,  𝑐 }  ∈  𝐸  ∧  { 𝑐 ,  𝑎 }  ∈  𝐸 )  →  𝑏  ≠  𝑐 ) ) | 
						
							| 9 | 8 | adantr | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  1  <  ( ♯ ‘ 𝑉 ) )  →  ( ( { 𝑎 ,  𝑏 }  ∈  𝐸  ∧  { 𝑏 ,  𝑐 }  ∈  𝐸  ∧  { 𝑐 ,  𝑎 }  ∈  𝐸 )  →  𝑏  ≠  𝑐 ) ) | 
						
							| 10 | 9 | ancrd | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  1  <  ( ♯ ‘ 𝑉 ) )  →  ( ( { 𝑎 ,  𝑏 }  ∈  𝐸  ∧  { 𝑏 ,  𝑐 }  ∈  𝐸  ∧  { 𝑐 ,  𝑎 }  ∈  𝐸 )  →  ( 𝑏  ≠  𝑐  ∧  ( { 𝑎 ,  𝑏 }  ∈  𝐸  ∧  { 𝑏 ,  𝑐 }  ∈  𝐸  ∧  { 𝑐 ,  𝑎 }  ∈  𝐸 ) ) ) ) | 
						
							| 11 | 10 | reximdv | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  1  <  ( ♯ ‘ 𝑉 ) )  →  ( ∃ 𝑐  ∈  𝑉 ( { 𝑎 ,  𝑏 }  ∈  𝐸  ∧  { 𝑏 ,  𝑐 }  ∈  𝐸  ∧  { 𝑐 ,  𝑎 }  ∈  𝐸 )  →  ∃ 𝑐  ∈  𝑉 ( 𝑏  ≠  𝑐  ∧  ( { 𝑎 ,  𝑏 }  ∈  𝐸  ∧  { 𝑏 ,  𝑐 }  ∈  𝐸  ∧  { 𝑐 ,  𝑎 }  ∈  𝐸 ) ) ) ) | 
						
							| 12 | 11 | reximdv | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  1  <  ( ♯ ‘ 𝑉 ) )  →  ( ∃ 𝑏  ∈  𝑉 ∃ 𝑐  ∈  𝑉 ( { 𝑎 ,  𝑏 }  ∈  𝐸  ∧  { 𝑏 ,  𝑐 }  ∈  𝐸  ∧  { 𝑐 ,  𝑎 }  ∈  𝐸 )  →  ∃ 𝑏  ∈  𝑉 ∃ 𝑐  ∈  𝑉 ( 𝑏  ≠  𝑐  ∧  ( { 𝑎 ,  𝑏 }  ∈  𝐸  ∧  { 𝑏 ,  𝑐 }  ∈  𝐸  ∧  { 𝑐 ,  𝑎 }  ∈  𝐸 ) ) ) ) | 
						
							| 13 | 12 | ralimdv | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  1  <  ( ♯ ‘ 𝑉 ) )  →  ( ∀ 𝑎  ∈  𝑉 ∃ 𝑏  ∈  𝑉 ∃ 𝑐  ∈  𝑉 ( { 𝑎 ,  𝑏 }  ∈  𝐸  ∧  { 𝑏 ,  𝑐 }  ∈  𝐸  ∧  { 𝑐 ,  𝑎 }  ∈  𝐸 )  →  ∀ 𝑎  ∈  𝑉 ∃ 𝑏  ∈  𝑉 ∃ 𝑐  ∈  𝑉 ( 𝑏  ≠  𝑐  ∧  ( { 𝑎 ,  𝑏 }  ∈  𝐸  ∧  { 𝑏 ,  𝑐 }  ∈  𝐸  ∧  { 𝑐 ,  𝑎 }  ∈  𝐸 ) ) ) ) | 
						
							| 14 | 3 13 | mpd | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  1  <  ( ♯ ‘ 𝑉 ) )  →  ∀ 𝑎  ∈  𝑉 ∃ 𝑏  ∈  𝑉 ∃ 𝑐  ∈  𝑉 ( 𝑏  ≠  𝑐  ∧  ( { 𝑎 ,  𝑏 }  ∈  𝐸  ∧  { 𝑏 ,  𝑐 }  ∈  𝐸  ∧  { 𝑐 ,  𝑎 }  ∈  𝐸 ) ) ) |