Metamath Proof Explorer


Theorem 3declth

Description: Comparing two decimal integers with three "digits" (unequal higher places). (Contributed by AV, 8-Sep-2021)

Ref Expression
Hypotheses 3decltc.a 𝐴 ∈ ℕ0
3decltc.b 𝐵 ∈ ℕ0
3decltc.c 𝐶 ∈ ℕ0
3decltc.d 𝐷 ∈ ℕ0
3decltc.e 𝐸 ∈ ℕ0
3decltc.f 𝐹 ∈ ℕ0
3decltc.3 𝐴 < 𝐵
3declth.1 𝐶 ≤ 9
3declth.2 𝐸 ≤ 9
Assertion 3declth 𝐴 𝐶 𝐸 < 𝐵 𝐷 𝐹

Proof

Step Hyp Ref Expression
1 3decltc.a 𝐴 ∈ ℕ0
2 3decltc.b 𝐵 ∈ ℕ0
3 3decltc.c 𝐶 ∈ ℕ0
4 3decltc.d 𝐷 ∈ ℕ0
5 3decltc.e 𝐸 ∈ ℕ0
6 3decltc.f 𝐹 ∈ ℕ0
7 3decltc.3 𝐴 < 𝐵
8 3declth.1 𝐶 ≤ 9
9 3declth.2 𝐸 ≤ 9
10 1 3 deccl 𝐴 𝐶 ∈ ℕ0
11 2 4 deccl 𝐵 𝐷 ∈ ℕ0
12 1 2 3 4 8 7 declth 𝐴 𝐶 < 𝐵 𝐷
13 10 11 5 6 9 12 declth 𝐴 𝐶 𝐸 < 𝐵 𝐷 𝐹