| Step |
Hyp |
Ref |
Expression |
| 1 |
|
3dim0.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
| 2 |
|
3dim0.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
| 3 |
|
3dim0.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
| 4 |
1 2 3
|
3dim1 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ) → ∃ 𝑢 ∈ 𝐴 ∃ 𝑣 ∈ 𝐴 ∃ 𝑤 ∈ 𝐴 ( 𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ ( 𝑄 ∨ 𝑢 ) ∧ ¬ 𝑤 ≤ ( ( 𝑄 ∨ 𝑢 ) ∨ 𝑣 ) ) ) |
| 5 |
4
|
3adant2 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → ∃ 𝑢 ∈ 𝐴 ∃ 𝑣 ∈ 𝐴 ∃ 𝑤 ∈ 𝐴 ( 𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ ( 𝑄 ∨ 𝑢 ) ∧ ¬ 𝑤 ≤ ( ( 𝑄 ∨ 𝑢 ) ∨ 𝑣 ) ) ) |
| 6 |
|
simpl21 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ ( 𝑄 ∨ 𝑢 ) ∧ ¬ 𝑤 ≤ ( ( 𝑄 ∨ 𝑢 ) ∨ 𝑣 ) ) ) ∧ 𝑃 = 𝑄 ) → 𝑢 ∈ 𝐴 ) |
| 7 |
|
simpl22 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ ( 𝑄 ∨ 𝑢 ) ∧ ¬ 𝑤 ≤ ( ( 𝑄 ∨ 𝑢 ) ∨ 𝑣 ) ) ) ∧ 𝑃 = 𝑄 ) → 𝑣 ∈ 𝐴 ) |
| 8 |
|
simp31 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ ( 𝑄 ∨ 𝑢 ) ∧ ¬ 𝑤 ≤ ( ( 𝑄 ∨ 𝑢 ) ∨ 𝑣 ) ) ) → 𝑄 ≠ 𝑢 ) |
| 9 |
8
|
necomd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ ( 𝑄 ∨ 𝑢 ) ∧ ¬ 𝑤 ≤ ( ( 𝑄 ∨ 𝑢 ) ∨ 𝑣 ) ) ) → 𝑢 ≠ 𝑄 ) |
| 10 |
9
|
adantr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ ( 𝑄 ∨ 𝑢 ) ∧ ¬ 𝑤 ≤ ( ( 𝑄 ∨ 𝑢 ) ∨ 𝑣 ) ) ) ∧ 𝑃 = 𝑄 ) → 𝑢 ≠ 𝑄 ) |
| 11 |
|
oveq1 |
⊢ ( 𝑃 = 𝑄 → ( 𝑃 ∨ 𝑄 ) = ( 𝑄 ∨ 𝑄 ) ) |
| 12 |
|
simp11 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ ( 𝑄 ∨ 𝑢 ) ∧ ¬ 𝑤 ≤ ( ( 𝑄 ∨ 𝑢 ) ∨ 𝑣 ) ) ) → 𝐾 ∈ HL ) |
| 13 |
|
simp13 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ ( 𝑄 ∨ 𝑢 ) ∧ ¬ 𝑤 ≤ ( ( 𝑄 ∨ 𝑢 ) ∨ 𝑣 ) ) ) → 𝑄 ∈ 𝐴 ) |
| 14 |
1 3
|
hlatjidm |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ) → ( 𝑄 ∨ 𝑄 ) = 𝑄 ) |
| 15 |
12 13 14
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ ( 𝑄 ∨ 𝑢 ) ∧ ¬ 𝑤 ≤ ( ( 𝑄 ∨ 𝑢 ) ∨ 𝑣 ) ) ) → ( 𝑄 ∨ 𝑄 ) = 𝑄 ) |
| 16 |
11 15
|
sylan9eqr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ ( 𝑄 ∨ 𝑢 ) ∧ ¬ 𝑤 ≤ ( ( 𝑄 ∨ 𝑢 ) ∨ 𝑣 ) ) ) ∧ 𝑃 = 𝑄 ) → ( 𝑃 ∨ 𝑄 ) = 𝑄 ) |
| 17 |
16
|
breq2d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ ( 𝑄 ∨ 𝑢 ) ∧ ¬ 𝑤 ≤ ( ( 𝑄 ∨ 𝑢 ) ∨ 𝑣 ) ) ) ∧ 𝑃 = 𝑄 ) → ( 𝑢 ≤ ( 𝑃 ∨ 𝑄 ) ↔ 𝑢 ≤ 𝑄 ) ) |
| 18 |
17
|
notbid |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ ( 𝑄 ∨ 𝑢 ) ∧ ¬ 𝑤 ≤ ( ( 𝑄 ∨ 𝑢 ) ∨ 𝑣 ) ) ) ∧ 𝑃 = 𝑄 ) → ( ¬ 𝑢 ≤ ( 𝑃 ∨ 𝑄 ) ↔ ¬ 𝑢 ≤ 𝑄 ) ) |
| 19 |
|
hlatl |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ AtLat ) |
| 20 |
12 19
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ ( 𝑄 ∨ 𝑢 ) ∧ ¬ 𝑤 ≤ ( ( 𝑄 ∨ 𝑢 ) ∨ 𝑣 ) ) ) → 𝐾 ∈ AtLat ) |
| 21 |
|
simp21 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ ( 𝑄 ∨ 𝑢 ) ∧ ¬ 𝑤 ≤ ( ( 𝑄 ∨ 𝑢 ) ∨ 𝑣 ) ) ) → 𝑢 ∈ 𝐴 ) |
| 22 |
2 3
|
atncmp |
⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑢 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → ( ¬ 𝑢 ≤ 𝑄 ↔ 𝑢 ≠ 𝑄 ) ) |
| 23 |
20 21 13 22
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ ( 𝑄 ∨ 𝑢 ) ∧ ¬ 𝑤 ≤ ( ( 𝑄 ∨ 𝑢 ) ∨ 𝑣 ) ) ) → ( ¬ 𝑢 ≤ 𝑄 ↔ 𝑢 ≠ 𝑄 ) ) |
| 24 |
23
|
adantr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ ( 𝑄 ∨ 𝑢 ) ∧ ¬ 𝑤 ≤ ( ( 𝑄 ∨ 𝑢 ) ∨ 𝑣 ) ) ) ∧ 𝑃 = 𝑄 ) → ( ¬ 𝑢 ≤ 𝑄 ↔ 𝑢 ≠ 𝑄 ) ) |
| 25 |
18 24
|
bitrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ ( 𝑄 ∨ 𝑢 ) ∧ ¬ 𝑤 ≤ ( ( 𝑄 ∨ 𝑢 ) ∨ 𝑣 ) ) ) ∧ 𝑃 = 𝑄 ) → ( ¬ 𝑢 ≤ ( 𝑃 ∨ 𝑄 ) ↔ 𝑢 ≠ 𝑄 ) ) |
| 26 |
10 25
|
mpbird |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ ( 𝑄 ∨ 𝑢 ) ∧ ¬ 𝑤 ≤ ( ( 𝑄 ∨ 𝑢 ) ∨ 𝑣 ) ) ) ∧ 𝑃 = 𝑄 ) → ¬ 𝑢 ≤ ( 𝑃 ∨ 𝑄 ) ) |
| 27 |
|
simpl32 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ ( 𝑄 ∨ 𝑢 ) ∧ ¬ 𝑤 ≤ ( ( 𝑄 ∨ 𝑢 ) ∨ 𝑣 ) ) ) ∧ 𝑃 = 𝑄 ) → ¬ 𝑣 ≤ ( 𝑄 ∨ 𝑢 ) ) |
| 28 |
16
|
oveq1d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ ( 𝑄 ∨ 𝑢 ) ∧ ¬ 𝑤 ≤ ( ( 𝑄 ∨ 𝑢 ) ∨ 𝑣 ) ) ) ∧ 𝑃 = 𝑄 ) → ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑢 ) = ( 𝑄 ∨ 𝑢 ) ) |
| 29 |
28
|
breq2d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ ( 𝑄 ∨ 𝑢 ) ∧ ¬ 𝑤 ≤ ( ( 𝑄 ∨ 𝑢 ) ∨ 𝑣 ) ) ) ∧ 𝑃 = 𝑄 ) → ( 𝑣 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑢 ) ↔ 𝑣 ≤ ( 𝑄 ∨ 𝑢 ) ) ) |
| 30 |
27 29
|
mtbird |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ ( 𝑄 ∨ 𝑢 ) ∧ ¬ 𝑤 ≤ ( ( 𝑄 ∨ 𝑢 ) ∨ 𝑣 ) ) ) ∧ 𝑃 = 𝑄 ) → ¬ 𝑣 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑢 ) ) |
| 31 |
|
breq1 |
⊢ ( 𝑟 = 𝑢 → ( 𝑟 ≤ ( 𝑃 ∨ 𝑄 ) ↔ 𝑢 ≤ ( 𝑃 ∨ 𝑄 ) ) ) |
| 32 |
31
|
notbid |
⊢ ( 𝑟 = 𝑢 → ( ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑄 ) ↔ ¬ 𝑢 ≤ ( 𝑃 ∨ 𝑄 ) ) ) |
| 33 |
|
oveq2 |
⊢ ( 𝑟 = 𝑢 → ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑟 ) = ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑢 ) ) |
| 34 |
33
|
breq2d |
⊢ ( 𝑟 = 𝑢 → ( 𝑠 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑟 ) ↔ 𝑠 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑢 ) ) ) |
| 35 |
34
|
notbid |
⊢ ( 𝑟 = 𝑢 → ( ¬ 𝑠 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑟 ) ↔ ¬ 𝑠 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑢 ) ) ) |
| 36 |
32 35
|
anbi12d |
⊢ ( 𝑟 = 𝑢 → ( ( ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑠 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑟 ) ) ↔ ( ¬ 𝑢 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑠 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑢 ) ) ) ) |
| 37 |
|
breq1 |
⊢ ( 𝑠 = 𝑣 → ( 𝑠 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑢 ) ↔ 𝑣 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑢 ) ) ) |
| 38 |
37
|
notbid |
⊢ ( 𝑠 = 𝑣 → ( ¬ 𝑠 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑢 ) ↔ ¬ 𝑣 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑢 ) ) ) |
| 39 |
38
|
anbi2d |
⊢ ( 𝑠 = 𝑣 → ( ( ¬ 𝑢 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑠 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑢 ) ) ↔ ( ¬ 𝑢 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑣 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑢 ) ) ) ) |
| 40 |
36 39
|
rspc2ev |
⊢ ( ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ ( ¬ 𝑢 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑣 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑢 ) ) ) → ∃ 𝑟 ∈ 𝐴 ∃ 𝑠 ∈ 𝐴 ( ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑠 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑟 ) ) ) |
| 41 |
6 7 26 30 40
|
syl112anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ ( 𝑄 ∨ 𝑢 ) ∧ ¬ 𝑤 ≤ ( ( 𝑄 ∨ 𝑢 ) ∨ 𝑣 ) ) ) ∧ 𝑃 = 𝑄 ) → ∃ 𝑟 ∈ 𝐴 ∃ 𝑠 ∈ 𝐴 ( ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑠 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑟 ) ) ) |
| 42 |
|
simp22 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ ( 𝑄 ∨ 𝑢 ) ∧ ¬ 𝑤 ≤ ( ( 𝑄 ∨ 𝑢 ) ∨ 𝑣 ) ) ) → 𝑣 ∈ 𝐴 ) |
| 43 |
|
simp23 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ ( 𝑄 ∨ 𝑢 ) ∧ ¬ 𝑤 ≤ ( ( 𝑄 ∨ 𝑢 ) ∨ 𝑣 ) ) ) → 𝑤 ∈ 𝐴 ) |
| 44 |
42 43
|
jca |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ ( 𝑄 ∨ 𝑢 ) ∧ ¬ 𝑤 ≤ ( ( 𝑄 ∨ 𝑢 ) ∨ 𝑣 ) ) ) → ( 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) |
| 45 |
44
|
ad2antrr |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ ( 𝑄 ∨ 𝑢 ) ∧ ¬ 𝑤 ≤ ( ( 𝑄 ∨ 𝑢 ) ∨ 𝑣 ) ) ) ∧ 𝑃 ≠ 𝑄 ) ∧ 𝑃 ≤ ( 𝑄 ∨ 𝑢 ) ) → ( 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) |
| 46 |
|
simpll1 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ ( 𝑄 ∨ 𝑢 ) ∧ ¬ 𝑤 ≤ ( ( 𝑄 ∨ 𝑢 ) ∨ 𝑣 ) ) ) ∧ 𝑃 ≠ 𝑄 ) ∧ 𝑃 ≤ ( 𝑄 ∨ 𝑢 ) ) → ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) |
| 47 |
|
simp32 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ ( 𝑄 ∨ 𝑢 ) ∧ ¬ 𝑤 ≤ ( ( 𝑄 ∨ 𝑢 ) ∨ 𝑣 ) ) ) → ¬ 𝑣 ≤ ( 𝑄 ∨ 𝑢 ) ) |
| 48 |
|
simp33 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ ( 𝑄 ∨ 𝑢 ) ∧ ¬ 𝑤 ≤ ( ( 𝑄 ∨ 𝑢 ) ∨ 𝑣 ) ) ) → ¬ 𝑤 ≤ ( ( 𝑄 ∨ 𝑢 ) ∨ 𝑣 ) ) |
| 49 |
21 47 48
|
3jca |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ ( 𝑄 ∨ 𝑢 ) ∧ ¬ 𝑤 ≤ ( ( 𝑄 ∨ 𝑢 ) ∨ 𝑣 ) ) ) → ( 𝑢 ∈ 𝐴 ∧ ¬ 𝑣 ≤ ( 𝑄 ∨ 𝑢 ) ∧ ¬ 𝑤 ≤ ( ( 𝑄 ∨ 𝑢 ) ∨ 𝑣 ) ) ) |
| 50 |
49
|
ad2antrr |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ ( 𝑄 ∨ 𝑢 ) ∧ ¬ 𝑤 ≤ ( ( 𝑄 ∨ 𝑢 ) ∨ 𝑣 ) ) ) ∧ 𝑃 ≠ 𝑄 ) ∧ 𝑃 ≤ ( 𝑄 ∨ 𝑢 ) ) → ( 𝑢 ∈ 𝐴 ∧ ¬ 𝑣 ≤ ( 𝑄 ∨ 𝑢 ) ∧ ¬ 𝑤 ≤ ( ( 𝑄 ∨ 𝑢 ) ∨ 𝑣 ) ) ) |
| 51 |
|
simplr |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ ( 𝑄 ∨ 𝑢 ) ∧ ¬ 𝑤 ≤ ( ( 𝑄 ∨ 𝑢 ) ∨ 𝑣 ) ) ) ∧ 𝑃 ≠ 𝑄 ) ∧ 𝑃 ≤ ( 𝑄 ∨ 𝑢 ) ) → 𝑃 ≠ 𝑄 ) |
| 52 |
|
simpr |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ ( 𝑄 ∨ 𝑢 ) ∧ ¬ 𝑤 ≤ ( ( 𝑄 ∨ 𝑢 ) ∨ 𝑣 ) ) ) ∧ 𝑃 ≠ 𝑄 ) ∧ 𝑃 ≤ ( 𝑄 ∨ 𝑢 ) ) → 𝑃 ≤ ( 𝑄 ∨ 𝑢 ) ) |
| 53 |
1 2 3
|
3dimlem2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑢 ∈ 𝐴 ∧ ¬ 𝑣 ≤ ( 𝑄 ∨ 𝑢 ) ∧ ¬ 𝑤 ≤ ( ( 𝑄 ∨ 𝑢 ) ∨ 𝑣 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑃 ≤ ( 𝑄 ∨ 𝑢 ) ) ) → ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑣 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑤 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑣 ) ) ) |
| 54 |
46 50 51 52 53
|
syl112anc |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ ( 𝑄 ∨ 𝑢 ) ∧ ¬ 𝑤 ≤ ( ( 𝑄 ∨ 𝑢 ) ∨ 𝑣 ) ) ) ∧ 𝑃 ≠ 𝑄 ) ∧ 𝑃 ≤ ( 𝑄 ∨ 𝑢 ) ) → ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑣 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑤 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑣 ) ) ) |
| 55 |
|
3simpc |
⊢ ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑣 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑤 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑣 ) ) → ( ¬ 𝑣 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑤 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑣 ) ) ) |
| 56 |
54 55
|
syl |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ ( 𝑄 ∨ 𝑢 ) ∧ ¬ 𝑤 ≤ ( ( 𝑄 ∨ 𝑢 ) ∨ 𝑣 ) ) ) ∧ 𝑃 ≠ 𝑄 ) ∧ 𝑃 ≤ ( 𝑄 ∨ 𝑢 ) ) → ( ¬ 𝑣 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑤 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑣 ) ) ) |
| 57 |
|
breq1 |
⊢ ( 𝑟 = 𝑣 → ( 𝑟 ≤ ( 𝑃 ∨ 𝑄 ) ↔ 𝑣 ≤ ( 𝑃 ∨ 𝑄 ) ) ) |
| 58 |
57
|
notbid |
⊢ ( 𝑟 = 𝑣 → ( ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑄 ) ↔ ¬ 𝑣 ≤ ( 𝑃 ∨ 𝑄 ) ) ) |
| 59 |
|
oveq2 |
⊢ ( 𝑟 = 𝑣 → ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑟 ) = ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑣 ) ) |
| 60 |
59
|
breq2d |
⊢ ( 𝑟 = 𝑣 → ( 𝑠 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑟 ) ↔ 𝑠 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑣 ) ) ) |
| 61 |
60
|
notbid |
⊢ ( 𝑟 = 𝑣 → ( ¬ 𝑠 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑟 ) ↔ ¬ 𝑠 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑣 ) ) ) |
| 62 |
58 61
|
anbi12d |
⊢ ( 𝑟 = 𝑣 → ( ( ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑠 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑟 ) ) ↔ ( ¬ 𝑣 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑠 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑣 ) ) ) ) |
| 63 |
|
breq1 |
⊢ ( 𝑠 = 𝑤 → ( 𝑠 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑣 ) ↔ 𝑤 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑣 ) ) ) |
| 64 |
63
|
notbid |
⊢ ( 𝑠 = 𝑤 → ( ¬ 𝑠 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑣 ) ↔ ¬ 𝑤 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑣 ) ) ) |
| 65 |
64
|
anbi2d |
⊢ ( 𝑠 = 𝑤 → ( ( ¬ 𝑣 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑠 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑣 ) ) ↔ ( ¬ 𝑣 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑤 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑣 ) ) ) ) |
| 66 |
62 65
|
rspc2ev |
⊢ ( ( 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ∧ ( ¬ 𝑣 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑤 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑣 ) ) ) → ∃ 𝑟 ∈ 𝐴 ∃ 𝑠 ∈ 𝐴 ( ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑠 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑟 ) ) ) |
| 67 |
66
|
3expa |
⊢ ( ( ( 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( ¬ 𝑣 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑤 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑣 ) ) ) → ∃ 𝑟 ∈ 𝐴 ∃ 𝑠 ∈ 𝐴 ( ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑠 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑟 ) ) ) |
| 68 |
45 56 67
|
syl2anc |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ ( 𝑄 ∨ 𝑢 ) ∧ ¬ 𝑤 ≤ ( ( 𝑄 ∨ 𝑢 ) ∨ 𝑣 ) ) ) ∧ 𝑃 ≠ 𝑄 ) ∧ 𝑃 ≤ ( 𝑄 ∨ 𝑢 ) ) → ∃ 𝑟 ∈ 𝐴 ∃ 𝑠 ∈ 𝐴 ( ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑠 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑟 ) ) ) |
| 69 |
21 43
|
jca |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ ( 𝑄 ∨ 𝑢 ) ∧ ¬ 𝑤 ≤ ( ( 𝑄 ∨ 𝑢 ) ∨ 𝑣 ) ) ) → ( 𝑢 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) |
| 70 |
69
|
ad3antrrr |
⊢ ( ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ ( 𝑄 ∨ 𝑢 ) ∧ ¬ 𝑤 ≤ ( ( 𝑄 ∨ 𝑢 ) ∨ 𝑣 ) ) ) ∧ 𝑃 ≠ 𝑄 ) ∧ ¬ 𝑃 ≤ ( 𝑄 ∨ 𝑢 ) ) ∧ 𝑃 ≤ ( ( 𝑄 ∨ 𝑢 ) ∨ 𝑣 ) ) → ( 𝑢 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) |
| 71 |
|
simp1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ ( 𝑄 ∨ 𝑢 ) ∧ ¬ 𝑤 ≤ ( ( 𝑄 ∨ 𝑢 ) ∨ 𝑣 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) |
| 72 |
21 42
|
jca |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ ( 𝑄 ∨ 𝑢 ) ∧ ¬ 𝑤 ≤ ( ( 𝑄 ∨ 𝑢 ) ∨ 𝑣 ) ) ) → ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ) |
| 73 |
8 48
|
jca |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ ( 𝑄 ∨ 𝑢 ) ∧ ¬ 𝑤 ≤ ( ( 𝑄 ∨ 𝑢 ) ∨ 𝑣 ) ) ) → ( 𝑄 ≠ 𝑢 ∧ ¬ 𝑤 ≤ ( ( 𝑄 ∨ 𝑢 ) ∨ 𝑣 ) ) ) |
| 74 |
71 72 73
|
3jca |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ ( 𝑄 ∨ 𝑢 ) ∧ ¬ 𝑤 ≤ ( ( 𝑄 ∨ 𝑢 ) ∨ 𝑣 ) ) ) → ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑢 ∧ ¬ 𝑤 ≤ ( ( 𝑄 ∨ 𝑢 ) ∨ 𝑣 ) ) ) ) |
| 75 |
74
|
ad3antrrr |
⊢ ( ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ ( 𝑄 ∨ 𝑢 ) ∧ ¬ 𝑤 ≤ ( ( 𝑄 ∨ 𝑢 ) ∨ 𝑣 ) ) ) ∧ 𝑃 ≠ 𝑄 ) ∧ ¬ 𝑃 ≤ ( 𝑄 ∨ 𝑢 ) ) ∧ 𝑃 ≤ ( ( 𝑄 ∨ 𝑢 ) ∨ 𝑣 ) ) → ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑢 ∧ ¬ 𝑤 ≤ ( ( 𝑄 ∨ 𝑢 ) ∨ 𝑣 ) ) ) ) |
| 76 |
|
simpllr |
⊢ ( ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ ( 𝑄 ∨ 𝑢 ) ∧ ¬ 𝑤 ≤ ( ( 𝑄 ∨ 𝑢 ) ∨ 𝑣 ) ) ) ∧ 𝑃 ≠ 𝑄 ) ∧ ¬ 𝑃 ≤ ( 𝑄 ∨ 𝑢 ) ) ∧ 𝑃 ≤ ( ( 𝑄 ∨ 𝑢 ) ∨ 𝑣 ) ) → 𝑃 ≠ 𝑄 ) |
| 77 |
|
simplr |
⊢ ( ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ ( 𝑄 ∨ 𝑢 ) ∧ ¬ 𝑤 ≤ ( ( 𝑄 ∨ 𝑢 ) ∨ 𝑣 ) ) ) ∧ 𝑃 ≠ 𝑄 ) ∧ ¬ 𝑃 ≤ ( 𝑄 ∨ 𝑢 ) ) ∧ 𝑃 ≤ ( ( 𝑄 ∨ 𝑢 ) ∨ 𝑣 ) ) → ¬ 𝑃 ≤ ( 𝑄 ∨ 𝑢 ) ) |
| 78 |
|
simpr |
⊢ ( ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ ( 𝑄 ∨ 𝑢 ) ∧ ¬ 𝑤 ≤ ( ( 𝑄 ∨ 𝑢 ) ∨ 𝑣 ) ) ) ∧ 𝑃 ≠ 𝑄 ) ∧ ¬ 𝑃 ≤ ( 𝑄 ∨ 𝑢 ) ) ∧ 𝑃 ≤ ( ( 𝑄 ∨ 𝑢 ) ∨ 𝑣 ) ) → 𝑃 ≤ ( ( 𝑄 ∨ 𝑢 ) ∨ 𝑣 ) ) |
| 79 |
1 2 3
|
3dimlem3 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑢 ∧ ¬ 𝑤 ≤ ( ( 𝑄 ∨ 𝑢 ) ∨ 𝑣 ) ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑃 ≤ ( 𝑄 ∨ 𝑢 ) ∧ 𝑃 ≤ ( ( 𝑄 ∨ 𝑢 ) ∨ 𝑣 ) ) ) → ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑢 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑤 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑢 ) ) ) |
| 80 |
75 76 77 78 79
|
syl13anc |
⊢ ( ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ ( 𝑄 ∨ 𝑢 ) ∧ ¬ 𝑤 ≤ ( ( 𝑄 ∨ 𝑢 ) ∨ 𝑣 ) ) ) ∧ 𝑃 ≠ 𝑄 ) ∧ ¬ 𝑃 ≤ ( 𝑄 ∨ 𝑢 ) ) ∧ 𝑃 ≤ ( ( 𝑄 ∨ 𝑢 ) ∨ 𝑣 ) ) → ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑢 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑤 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑢 ) ) ) |
| 81 |
|
3simpc |
⊢ ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑢 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑤 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑢 ) ) → ( ¬ 𝑢 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑤 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑢 ) ) ) |
| 82 |
80 81
|
syl |
⊢ ( ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ ( 𝑄 ∨ 𝑢 ) ∧ ¬ 𝑤 ≤ ( ( 𝑄 ∨ 𝑢 ) ∨ 𝑣 ) ) ) ∧ 𝑃 ≠ 𝑄 ) ∧ ¬ 𝑃 ≤ ( 𝑄 ∨ 𝑢 ) ) ∧ 𝑃 ≤ ( ( 𝑄 ∨ 𝑢 ) ∨ 𝑣 ) ) → ( ¬ 𝑢 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑤 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑢 ) ) ) |
| 83 |
|
breq1 |
⊢ ( 𝑠 = 𝑤 → ( 𝑠 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑢 ) ↔ 𝑤 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑢 ) ) ) |
| 84 |
83
|
notbid |
⊢ ( 𝑠 = 𝑤 → ( ¬ 𝑠 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑢 ) ↔ ¬ 𝑤 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑢 ) ) ) |
| 85 |
84
|
anbi2d |
⊢ ( 𝑠 = 𝑤 → ( ( ¬ 𝑢 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑠 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑢 ) ) ↔ ( ¬ 𝑢 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑤 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑢 ) ) ) ) |
| 86 |
36 85
|
rspc2ev |
⊢ ( ( 𝑢 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ∧ ( ¬ 𝑢 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑤 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑢 ) ) ) → ∃ 𝑟 ∈ 𝐴 ∃ 𝑠 ∈ 𝐴 ( ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑠 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑟 ) ) ) |
| 87 |
86
|
3expa |
⊢ ( ( ( 𝑢 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( ¬ 𝑢 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑤 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑢 ) ) ) → ∃ 𝑟 ∈ 𝐴 ∃ 𝑠 ∈ 𝐴 ( ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑠 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑟 ) ) ) |
| 88 |
70 82 87
|
syl2anc |
⊢ ( ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ ( 𝑄 ∨ 𝑢 ) ∧ ¬ 𝑤 ≤ ( ( 𝑄 ∨ 𝑢 ) ∨ 𝑣 ) ) ) ∧ 𝑃 ≠ 𝑄 ) ∧ ¬ 𝑃 ≤ ( 𝑄 ∨ 𝑢 ) ) ∧ 𝑃 ≤ ( ( 𝑄 ∨ 𝑢 ) ∨ 𝑣 ) ) → ∃ 𝑟 ∈ 𝐴 ∃ 𝑠 ∈ 𝐴 ( ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑠 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑟 ) ) ) |
| 89 |
72
|
ad3antrrr |
⊢ ( ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ ( 𝑄 ∨ 𝑢 ) ∧ ¬ 𝑤 ≤ ( ( 𝑄 ∨ 𝑢 ) ∨ 𝑣 ) ) ) ∧ 𝑃 ≠ 𝑄 ) ∧ ¬ 𝑃 ≤ ( 𝑄 ∨ 𝑢 ) ) ∧ ¬ 𝑃 ≤ ( ( 𝑄 ∨ 𝑢 ) ∨ 𝑣 ) ) → ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ) |
| 90 |
8 47
|
jca |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ ( 𝑄 ∨ 𝑢 ) ∧ ¬ 𝑤 ≤ ( ( 𝑄 ∨ 𝑢 ) ∨ 𝑣 ) ) ) → ( 𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ ( 𝑄 ∨ 𝑢 ) ) ) |
| 91 |
71 72 90
|
3jca |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ ( 𝑄 ∨ 𝑢 ) ∧ ¬ 𝑤 ≤ ( ( 𝑄 ∨ 𝑢 ) ∨ 𝑣 ) ) ) → ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ ( 𝑄 ∨ 𝑢 ) ) ) ) |
| 92 |
91
|
ad3antrrr |
⊢ ( ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ ( 𝑄 ∨ 𝑢 ) ∧ ¬ 𝑤 ≤ ( ( 𝑄 ∨ 𝑢 ) ∨ 𝑣 ) ) ) ∧ 𝑃 ≠ 𝑄 ) ∧ ¬ 𝑃 ≤ ( 𝑄 ∨ 𝑢 ) ) ∧ ¬ 𝑃 ≤ ( ( 𝑄 ∨ 𝑢 ) ∨ 𝑣 ) ) → ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ ( 𝑄 ∨ 𝑢 ) ) ) ) |
| 93 |
|
simpllr |
⊢ ( ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ ( 𝑄 ∨ 𝑢 ) ∧ ¬ 𝑤 ≤ ( ( 𝑄 ∨ 𝑢 ) ∨ 𝑣 ) ) ) ∧ 𝑃 ≠ 𝑄 ) ∧ ¬ 𝑃 ≤ ( 𝑄 ∨ 𝑢 ) ) ∧ ¬ 𝑃 ≤ ( ( 𝑄 ∨ 𝑢 ) ∨ 𝑣 ) ) → 𝑃 ≠ 𝑄 ) |
| 94 |
|
simplr |
⊢ ( ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ ( 𝑄 ∨ 𝑢 ) ∧ ¬ 𝑤 ≤ ( ( 𝑄 ∨ 𝑢 ) ∨ 𝑣 ) ) ) ∧ 𝑃 ≠ 𝑄 ) ∧ ¬ 𝑃 ≤ ( 𝑄 ∨ 𝑢 ) ) ∧ ¬ 𝑃 ≤ ( ( 𝑄 ∨ 𝑢 ) ∨ 𝑣 ) ) → ¬ 𝑃 ≤ ( 𝑄 ∨ 𝑢 ) ) |
| 95 |
|
simpr |
⊢ ( ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ ( 𝑄 ∨ 𝑢 ) ∧ ¬ 𝑤 ≤ ( ( 𝑄 ∨ 𝑢 ) ∨ 𝑣 ) ) ) ∧ 𝑃 ≠ 𝑄 ) ∧ ¬ 𝑃 ≤ ( 𝑄 ∨ 𝑢 ) ) ∧ ¬ 𝑃 ≤ ( ( 𝑄 ∨ 𝑢 ) ∨ 𝑣 ) ) → ¬ 𝑃 ≤ ( ( 𝑄 ∨ 𝑢 ) ∨ 𝑣 ) ) |
| 96 |
1 2 3
|
3dimlem4 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ ( 𝑄 ∨ 𝑢 ) ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑃 ≤ ( 𝑄 ∨ 𝑢 ) ) ∧ ¬ 𝑃 ≤ ( ( 𝑄 ∨ 𝑢 ) ∨ 𝑣 ) ) → ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑢 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑣 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑢 ) ) ) |
| 97 |
92 93 94 95 96
|
syl121anc |
⊢ ( ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ ( 𝑄 ∨ 𝑢 ) ∧ ¬ 𝑤 ≤ ( ( 𝑄 ∨ 𝑢 ) ∨ 𝑣 ) ) ) ∧ 𝑃 ≠ 𝑄 ) ∧ ¬ 𝑃 ≤ ( 𝑄 ∨ 𝑢 ) ) ∧ ¬ 𝑃 ≤ ( ( 𝑄 ∨ 𝑢 ) ∨ 𝑣 ) ) → ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑢 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑣 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑢 ) ) ) |
| 98 |
|
3simpc |
⊢ ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑢 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑣 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑢 ) ) → ( ¬ 𝑢 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑣 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑢 ) ) ) |
| 99 |
97 98
|
syl |
⊢ ( ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ ( 𝑄 ∨ 𝑢 ) ∧ ¬ 𝑤 ≤ ( ( 𝑄 ∨ 𝑢 ) ∨ 𝑣 ) ) ) ∧ 𝑃 ≠ 𝑄 ) ∧ ¬ 𝑃 ≤ ( 𝑄 ∨ 𝑢 ) ) ∧ ¬ 𝑃 ≤ ( ( 𝑄 ∨ 𝑢 ) ∨ 𝑣 ) ) → ( ¬ 𝑢 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑣 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑢 ) ) ) |
| 100 |
40
|
3expa |
⊢ ( ( ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ∧ ( ¬ 𝑢 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑣 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑢 ) ) ) → ∃ 𝑟 ∈ 𝐴 ∃ 𝑠 ∈ 𝐴 ( ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑠 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑟 ) ) ) |
| 101 |
89 99 100
|
syl2anc |
⊢ ( ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ ( 𝑄 ∨ 𝑢 ) ∧ ¬ 𝑤 ≤ ( ( 𝑄 ∨ 𝑢 ) ∨ 𝑣 ) ) ) ∧ 𝑃 ≠ 𝑄 ) ∧ ¬ 𝑃 ≤ ( 𝑄 ∨ 𝑢 ) ) ∧ ¬ 𝑃 ≤ ( ( 𝑄 ∨ 𝑢 ) ∨ 𝑣 ) ) → ∃ 𝑟 ∈ 𝐴 ∃ 𝑠 ∈ 𝐴 ( ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑠 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑟 ) ) ) |
| 102 |
88 101
|
pm2.61dan |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ ( 𝑄 ∨ 𝑢 ) ∧ ¬ 𝑤 ≤ ( ( 𝑄 ∨ 𝑢 ) ∨ 𝑣 ) ) ) ∧ 𝑃 ≠ 𝑄 ) ∧ ¬ 𝑃 ≤ ( 𝑄 ∨ 𝑢 ) ) → ∃ 𝑟 ∈ 𝐴 ∃ 𝑠 ∈ 𝐴 ( ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑠 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑟 ) ) ) |
| 103 |
68 102
|
pm2.61dan |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ ( 𝑄 ∨ 𝑢 ) ∧ ¬ 𝑤 ≤ ( ( 𝑄 ∨ 𝑢 ) ∨ 𝑣 ) ) ) ∧ 𝑃 ≠ 𝑄 ) → ∃ 𝑟 ∈ 𝐴 ∃ 𝑠 ∈ 𝐴 ( ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑠 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑟 ) ) ) |
| 104 |
41 103
|
pm2.61dane |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ ( 𝑄 ∨ 𝑢 ) ∧ ¬ 𝑤 ≤ ( ( 𝑄 ∨ 𝑢 ) ∨ 𝑣 ) ) ) → ∃ 𝑟 ∈ 𝐴 ∃ 𝑠 ∈ 𝐴 ( ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑠 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑟 ) ) ) |
| 105 |
104
|
3exp |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → ( ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) → ( ( 𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ ( 𝑄 ∨ 𝑢 ) ∧ ¬ 𝑤 ≤ ( ( 𝑄 ∨ 𝑢 ) ∨ 𝑣 ) ) → ∃ 𝑟 ∈ 𝐴 ∃ 𝑠 ∈ 𝐴 ( ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑠 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑟 ) ) ) ) ) |
| 106 |
105
|
3expd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → ( 𝑢 ∈ 𝐴 → ( 𝑣 ∈ 𝐴 → ( 𝑤 ∈ 𝐴 → ( ( 𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ ( 𝑄 ∨ 𝑢 ) ∧ ¬ 𝑤 ≤ ( ( 𝑄 ∨ 𝑢 ) ∨ 𝑣 ) ) → ∃ 𝑟 ∈ 𝐴 ∃ 𝑠 ∈ 𝐴 ( ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑠 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑟 ) ) ) ) ) ) ) |
| 107 |
106
|
imp32 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ) → ( 𝑤 ∈ 𝐴 → ( ( 𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ ( 𝑄 ∨ 𝑢 ) ∧ ¬ 𝑤 ≤ ( ( 𝑄 ∨ 𝑢 ) ∨ 𝑣 ) ) → ∃ 𝑟 ∈ 𝐴 ∃ 𝑠 ∈ 𝐴 ( ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑠 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑟 ) ) ) ) ) |
| 108 |
107
|
rexlimdv |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ) → ( ∃ 𝑤 ∈ 𝐴 ( 𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ ( 𝑄 ∨ 𝑢 ) ∧ ¬ 𝑤 ≤ ( ( 𝑄 ∨ 𝑢 ) ∨ 𝑣 ) ) → ∃ 𝑟 ∈ 𝐴 ∃ 𝑠 ∈ 𝐴 ( ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑠 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑟 ) ) ) ) |
| 109 |
108
|
rexlimdvva |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → ( ∃ 𝑢 ∈ 𝐴 ∃ 𝑣 ∈ 𝐴 ∃ 𝑤 ∈ 𝐴 ( 𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ ( 𝑄 ∨ 𝑢 ) ∧ ¬ 𝑤 ≤ ( ( 𝑄 ∨ 𝑢 ) ∨ 𝑣 ) ) → ∃ 𝑟 ∈ 𝐴 ∃ 𝑠 ∈ 𝐴 ( ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑠 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑟 ) ) ) ) |
| 110 |
5 109
|
mpd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → ∃ 𝑟 ∈ 𝐴 ∃ 𝑠 ∈ 𝐴 ( ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑠 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑟 ) ) ) |