Metamath Proof Explorer


Theorem 3dim2

Description: Construct 2 new layers on top of 2 given atoms. (Contributed by NM, 27-Jul-2012)

Ref Expression
Hypotheses 3dim0.j = ( join ‘ 𝐾 )
3dim0.l = ( le ‘ 𝐾 )
3dim0.a 𝐴 = ( Atoms ‘ 𝐾 )
Assertion 3dim2 ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) → ∃ 𝑟𝐴𝑠𝐴 ( ¬ 𝑟 ( 𝑃 𝑄 ) ∧ ¬ 𝑠 ( ( 𝑃 𝑄 ) 𝑟 ) ) )

Proof

Step Hyp Ref Expression
1 3dim0.j = ( join ‘ 𝐾 )
2 3dim0.l = ( le ‘ 𝐾 )
3 3dim0.a 𝐴 = ( Atoms ‘ 𝐾 )
4 1 2 3 3dim1 ( ( 𝐾 ∈ HL ∧ 𝑄𝐴 ) → ∃ 𝑢𝐴𝑣𝐴𝑤𝐴 ( 𝑄𝑢 ∧ ¬ 𝑣 ( 𝑄 𝑢 ) ∧ ¬ 𝑤 ( ( 𝑄 𝑢 ) 𝑣 ) ) )
5 4 3adant2 ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) → ∃ 𝑢𝐴𝑣𝐴𝑤𝐴 ( 𝑄𝑢 ∧ ¬ 𝑣 ( 𝑄 𝑢 ) ∧ ¬ 𝑤 ( ( 𝑄 𝑢 ) 𝑣 ) ) )
6 simpl21 ( ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑢𝐴𝑣𝐴𝑤𝐴 ) ∧ ( 𝑄𝑢 ∧ ¬ 𝑣 ( 𝑄 𝑢 ) ∧ ¬ 𝑤 ( ( 𝑄 𝑢 ) 𝑣 ) ) ) ∧ 𝑃 = 𝑄 ) → 𝑢𝐴 )
7 simpl22 ( ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑢𝐴𝑣𝐴𝑤𝐴 ) ∧ ( 𝑄𝑢 ∧ ¬ 𝑣 ( 𝑄 𝑢 ) ∧ ¬ 𝑤 ( ( 𝑄 𝑢 ) 𝑣 ) ) ) ∧ 𝑃 = 𝑄 ) → 𝑣𝐴 )
8 simp31 ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑢𝐴𝑣𝐴𝑤𝐴 ) ∧ ( 𝑄𝑢 ∧ ¬ 𝑣 ( 𝑄 𝑢 ) ∧ ¬ 𝑤 ( ( 𝑄 𝑢 ) 𝑣 ) ) ) → 𝑄𝑢 )
9 8 necomd ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑢𝐴𝑣𝐴𝑤𝐴 ) ∧ ( 𝑄𝑢 ∧ ¬ 𝑣 ( 𝑄 𝑢 ) ∧ ¬ 𝑤 ( ( 𝑄 𝑢 ) 𝑣 ) ) ) → 𝑢𝑄 )
10 9 adantr ( ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑢𝐴𝑣𝐴𝑤𝐴 ) ∧ ( 𝑄𝑢 ∧ ¬ 𝑣 ( 𝑄 𝑢 ) ∧ ¬ 𝑤 ( ( 𝑄 𝑢 ) 𝑣 ) ) ) ∧ 𝑃 = 𝑄 ) → 𝑢𝑄 )
11 oveq1 ( 𝑃 = 𝑄 → ( 𝑃 𝑄 ) = ( 𝑄 𝑄 ) )
12 simp11 ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑢𝐴𝑣𝐴𝑤𝐴 ) ∧ ( 𝑄𝑢 ∧ ¬ 𝑣 ( 𝑄 𝑢 ) ∧ ¬ 𝑤 ( ( 𝑄 𝑢 ) 𝑣 ) ) ) → 𝐾 ∈ HL )
13 simp13 ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑢𝐴𝑣𝐴𝑤𝐴 ) ∧ ( 𝑄𝑢 ∧ ¬ 𝑣 ( 𝑄 𝑢 ) ∧ ¬ 𝑤 ( ( 𝑄 𝑢 ) 𝑣 ) ) ) → 𝑄𝐴 )
14 1 3 hlatjidm ( ( 𝐾 ∈ HL ∧ 𝑄𝐴 ) → ( 𝑄 𝑄 ) = 𝑄 )
15 12 13 14 syl2anc ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑢𝐴𝑣𝐴𝑤𝐴 ) ∧ ( 𝑄𝑢 ∧ ¬ 𝑣 ( 𝑄 𝑢 ) ∧ ¬ 𝑤 ( ( 𝑄 𝑢 ) 𝑣 ) ) ) → ( 𝑄 𝑄 ) = 𝑄 )
16 11 15 sylan9eqr ( ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑢𝐴𝑣𝐴𝑤𝐴 ) ∧ ( 𝑄𝑢 ∧ ¬ 𝑣 ( 𝑄 𝑢 ) ∧ ¬ 𝑤 ( ( 𝑄 𝑢 ) 𝑣 ) ) ) ∧ 𝑃 = 𝑄 ) → ( 𝑃 𝑄 ) = 𝑄 )
17 16 breq2d ( ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑢𝐴𝑣𝐴𝑤𝐴 ) ∧ ( 𝑄𝑢 ∧ ¬ 𝑣 ( 𝑄 𝑢 ) ∧ ¬ 𝑤 ( ( 𝑄 𝑢 ) 𝑣 ) ) ) ∧ 𝑃 = 𝑄 ) → ( 𝑢 ( 𝑃 𝑄 ) ↔ 𝑢 𝑄 ) )
18 17 notbid ( ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑢𝐴𝑣𝐴𝑤𝐴 ) ∧ ( 𝑄𝑢 ∧ ¬ 𝑣 ( 𝑄 𝑢 ) ∧ ¬ 𝑤 ( ( 𝑄 𝑢 ) 𝑣 ) ) ) ∧ 𝑃 = 𝑄 ) → ( ¬ 𝑢 ( 𝑃 𝑄 ) ↔ ¬ 𝑢 𝑄 ) )
19 hlatl ( 𝐾 ∈ HL → 𝐾 ∈ AtLat )
20 12 19 syl ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑢𝐴𝑣𝐴𝑤𝐴 ) ∧ ( 𝑄𝑢 ∧ ¬ 𝑣 ( 𝑄 𝑢 ) ∧ ¬ 𝑤 ( ( 𝑄 𝑢 ) 𝑣 ) ) ) → 𝐾 ∈ AtLat )
21 simp21 ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑢𝐴𝑣𝐴𝑤𝐴 ) ∧ ( 𝑄𝑢 ∧ ¬ 𝑣 ( 𝑄 𝑢 ) ∧ ¬ 𝑤 ( ( 𝑄 𝑢 ) 𝑣 ) ) ) → 𝑢𝐴 )
22 2 3 atncmp ( ( 𝐾 ∈ AtLat ∧ 𝑢𝐴𝑄𝐴 ) → ( ¬ 𝑢 𝑄𝑢𝑄 ) )
23 20 21 13 22 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑢𝐴𝑣𝐴𝑤𝐴 ) ∧ ( 𝑄𝑢 ∧ ¬ 𝑣 ( 𝑄 𝑢 ) ∧ ¬ 𝑤 ( ( 𝑄 𝑢 ) 𝑣 ) ) ) → ( ¬ 𝑢 𝑄𝑢𝑄 ) )
24 23 adantr ( ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑢𝐴𝑣𝐴𝑤𝐴 ) ∧ ( 𝑄𝑢 ∧ ¬ 𝑣 ( 𝑄 𝑢 ) ∧ ¬ 𝑤 ( ( 𝑄 𝑢 ) 𝑣 ) ) ) ∧ 𝑃 = 𝑄 ) → ( ¬ 𝑢 𝑄𝑢𝑄 ) )
25 18 24 bitrd ( ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑢𝐴𝑣𝐴𝑤𝐴 ) ∧ ( 𝑄𝑢 ∧ ¬ 𝑣 ( 𝑄 𝑢 ) ∧ ¬ 𝑤 ( ( 𝑄 𝑢 ) 𝑣 ) ) ) ∧ 𝑃 = 𝑄 ) → ( ¬ 𝑢 ( 𝑃 𝑄 ) ↔ 𝑢𝑄 ) )
26 10 25 mpbird ( ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑢𝐴𝑣𝐴𝑤𝐴 ) ∧ ( 𝑄𝑢 ∧ ¬ 𝑣 ( 𝑄 𝑢 ) ∧ ¬ 𝑤 ( ( 𝑄 𝑢 ) 𝑣 ) ) ) ∧ 𝑃 = 𝑄 ) → ¬ 𝑢 ( 𝑃 𝑄 ) )
27 simpl32 ( ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑢𝐴𝑣𝐴𝑤𝐴 ) ∧ ( 𝑄𝑢 ∧ ¬ 𝑣 ( 𝑄 𝑢 ) ∧ ¬ 𝑤 ( ( 𝑄 𝑢 ) 𝑣 ) ) ) ∧ 𝑃 = 𝑄 ) → ¬ 𝑣 ( 𝑄 𝑢 ) )
28 16 oveq1d ( ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑢𝐴𝑣𝐴𝑤𝐴 ) ∧ ( 𝑄𝑢 ∧ ¬ 𝑣 ( 𝑄 𝑢 ) ∧ ¬ 𝑤 ( ( 𝑄 𝑢 ) 𝑣 ) ) ) ∧ 𝑃 = 𝑄 ) → ( ( 𝑃 𝑄 ) 𝑢 ) = ( 𝑄 𝑢 ) )
29 28 breq2d ( ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑢𝐴𝑣𝐴𝑤𝐴 ) ∧ ( 𝑄𝑢 ∧ ¬ 𝑣 ( 𝑄 𝑢 ) ∧ ¬ 𝑤 ( ( 𝑄 𝑢 ) 𝑣 ) ) ) ∧ 𝑃 = 𝑄 ) → ( 𝑣 ( ( 𝑃 𝑄 ) 𝑢 ) ↔ 𝑣 ( 𝑄 𝑢 ) ) )
30 27 29 mtbird ( ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑢𝐴𝑣𝐴𝑤𝐴 ) ∧ ( 𝑄𝑢 ∧ ¬ 𝑣 ( 𝑄 𝑢 ) ∧ ¬ 𝑤 ( ( 𝑄 𝑢 ) 𝑣 ) ) ) ∧ 𝑃 = 𝑄 ) → ¬ 𝑣 ( ( 𝑃 𝑄 ) 𝑢 ) )
31 breq1 ( 𝑟 = 𝑢 → ( 𝑟 ( 𝑃 𝑄 ) ↔ 𝑢 ( 𝑃 𝑄 ) ) )
32 31 notbid ( 𝑟 = 𝑢 → ( ¬ 𝑟 ( 𝑃 𝑄 ) ↔ ¬ 𝑢 ( 𝑃 𝑄 ) ) )
33 oveq2 ( 𝑟 = 𝑢 → ( ( 𝑃 𝑄 ) 𝑟 ) = ( ( 𝑃 𝑄 ) 𝑢 ) )
34 33 breq2d ( 𝑟 = 𝑢 → ( 𝑠 ( ( 𝑃 𝑄 ) 𝑟 ) ↔ 𝑠 ( ( 𝑃 𝑄 ) 𝑢 ) ) )
35 34 notbid ( 𝑟 = 𝑢 → ( ¬ 𝑠 ( ( 𝑃 𝑄 ) 𝑟 ) ↔ ¬ 𝑠 ( ( 𝑃 𝑄 ) 𝑢 ) ) )
36 32 35 anbi12d ( 𝑟 = 𝑢 → ( ( ¬ 𝑟 ( 𝑃 𝑄 ) ∧ ¬ 𝑠 ( ( 𝑃 𝑄 ) 𝑟 ) ) ↔ ( ¬ 𝑢 ( 𝑃 𝑄 ) ∧ ¬ 𝑠 ( ( 𝑃 𝑄 ) 𝑢 ) ) ) )
37 breq1 ( 𝑠 = 𝑣 → ( 𝑠 ( ( 𝑃 𝑄 ) 𝑢 ) ↔ 𝑣 ( ( 𝑃 𝑄 ) 𝑢 ) ) )
38 37 notbid ( 𝑠 = 𝑣 → ( ¬ 𝑠 ( ( 𝑃 𝑄 ) 𝑢 ) ↔ ¬ 𝑣 ( ( 𝑃 𝑄 ) 𝑢 ) ) )
39 38 anbi2d ( 𝑠 = 𝑣 → ( ( ¬ 𝑢 ( 𝑃 𝑄 ) ∧ ¬ 𝑠 ( ( 𝑃 𝑄 ) 𝑢 ) ) ↔ ( ¬ 𝑢 ( 𝑃 𝑄 ) ∧ ¬ 𝑣 ( ( 𝑃 𝑄 ) 𝑢 ) ) ) )
40 36 39 rspc2ev ( ( 𝑢𝐴𝑣𝐴 ∧ ( ¬ 𝑢 ( 𝑃 𝑄 ) ∧ ¬ 𝑣 ( ( 𝑃 𝑄 ) 𝑢 ) ) ) → ∃ 𝑟𝐴𝑠𝐴 ( ¬ 𝑟 ( 𝑃 𝑄 ) ∧ ¬ 𝑠 ( ( 𝑃 𝑄 ) 𝑟 ) ) )
41 6 7 26 30 40 syl112anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑢𝐴𝑣𝐴𝑤𝐴 ) ∧ ( 𝑄𝑢 ∧ ¬ 𝑣 ( 𝑄 𝑢 ) ∧ ¬ 𝑤 ( ( 𝑄 𝑢 ) 𝑣 ) ) ) ∧ 𝑃 = 𝑄 ) → ∃ 𝑟𝐴𝑠𝐴 ( ¬ 𝑟 ( 𝑃 𝑄 ) ∧ ¬ 𝑠 ( ( 𝑃 𝑄 ) 𝑟 ) ) )
42 simp22 ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑢𝐴𝑣𝐴𝑤𝐴 ) ∧ ( 𝑄𝑢 ∧ ¬ 𝑣 ( 𝑄 𝑢 ) ∧ ¬ 𝑤 ( ( 𝑄 𝑢 ) 𝑣 ) ) ) → 𝑣𝐴 )
43 simp23 ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑢𝐴𝑣𝐴𝑤𝐴 ) ∧ ( 𝑄𝑢 ∧ ¬ 𝑣 ( 𝑄 𝑢 ) ∧ ¬ 𝑤 ( ( 𝑄 𝑢 ) 𝑣 ) ) ) → 𝑤𝐴 )
44 42 43 jca ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑢𝐴𝑣𝐴𝑤𝐴 ) ∧ ( 𝑄𝑢 ∧ ¬ 𝑣 ( 𝑄 𝑢 ) ∧ ¬ 𝑤 ( ( 𝑄 𝑢 ) 𝑣 ) ) ) → ( 𝑣𝐴𝑤𝐴 ) )
45 44 ad2antrr ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑢𝐴𝑣𝐴𝑤𝐴 ) ∧ ( 𝑄𝑢 ∧ ¬ 𝑣 ( 𝑄 𝑢 ) ∧ ¬ 𝑤 ( ( 𝑄 𝑢 ) 𝑣 ) ) ) ∧ 𝑃𝑄 ) ∧ 𝑃 ( 𝑄 𝑢 ) ) → ( 𝑣𝐴𝑤𝐴 ) )
46 simpll1 ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑢𝐴𝑣𝐴𝑤𝐴 ) ∧ ( 𝑄𝑢 ∧ ¬ 𝑣 ( 𝑄 𝑢 ) ∧ ¬ 𝑤 ( ( 𝑄 𝑢 ) 𝑣 ) ) ) ∧ 𝑃𝑄 ) ∧ 𝑃 ( 𝑄 𝑢 ) ) → ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) )
47 simp32 ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑢𝐴𝑣𝐴𝑤𝐴 ) ∧ ( 𝑄𝑢 ∧ ¬ 𝑣 ( 𝑄 𝑢 ) ∧ ¬ 𝑤 ( ( 𝑄 𝑢 ) 𝑣 ) ) ) → ¬ 𝑣 ( 𝑄 𝑢 ) )
48 simp33 ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑢𝐴𝑣𝐴𝑤𝐴 ) ∧ ( 𝑄𝑢 ∧ ¬ 𝑣 ( 𝑄 𝑢 ) ∧ ¬ 𝑤 ( ( 𝑄 𝑢 ) 𝑣 ) ) ) → ¬ 𝑤 ( ( 𝑄 𝑢 ) 𝑣 ) )
49 21 47 48 3jca ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑢𝐴𝑣𝐴𝑤𝐴 ) ∧ ( 𝑄𝑢 ∧ ¬ 𝑣 ( 𝑄 𝑢 ) ∧ ¬ 𝑤 ( ( 𝑄 𝑢 ) 𝑣 ) ) ) → ( 𝑢𝐴 ∧ ¬ 𝑣 ( 𝑄 𝑢 ) ∧ ¬ 𝑤 ( ( 𝑄 𝑢 ) 𝑣 ) ) )
50 49 ad2antrr ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑢𝐴𝑣𝐴𝑤𝐴 ) ∧ ( 𝑄𝑢 ∧ ¬ 𝑣 ( 𝑄 𝑢 ) ∧ ¬ 𝑤 ( ( 𝑄 𝑢 ) 𝑣 ) ) ) ∧ 𝑃𝑄 ) ∧ 𝑃 ( 𝑄 𝑢 ) ) → ( 𝑢𝐴 ∧ ¬ 𝑣 ( 𝑄 𝑢 ) ∧ ¬ 𝑤 ( ( 𝑄 𝑢 ) 𝑣 ) ) )
51 simplr ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑢𝐴𝑣𝐴𝑤𝐴 ) ∧ ( 𝑄𝑢 ∧ ¬ 𝑣 ( 𝑄 𝑢 ) ∧ ¬ 𝑤 ( ( 𝑄 𝑢 ) 𝑣 ) ) ) ∧ 𝑃𝑄 ) ∧ 𝑃 ( 𝑄 𝑢 ) ) → 𝑃𝑄 )
52 simpr ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑢𝐴𝑣𝐴𝑤𝐴 ) ∧ ( 𝑄𝑢 ∧ ¬ 𝑣 ( 𝑄 𝑢 ) ∧ ¬ 𝑤 ( ( 𝑄 𝑢 ) 𝑣 ) ) ) ∧ 𝑃𝑄 ) ∧ 𝑃 ( 𝑄 𝑢 ) ) → 𝑃 ( 𝑄 𝑢 ) )
53 1 2 3 3dimlem2 ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑢𝐴 ∧ ¬ 𝑣 ( 𝑄 𝑢 ) ∧ ¬ 𝑤 ( ( 𝑄 𝑢 ) 𝑣 ) ) ∧ ( 𝑃𝑄𝑃 ( 𝑄 𝑢 ) ) ) → ( 𝑃𝑄 ∧ ¬ 𝑣 ( 𝑃 𝑄 ) ∧ ¬ 𝑤 ( ( 𝑃 𝑄 ) 𝑣 ) ) )
54 46 50 51 52 53 syl112anc ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑢𝐴𝑣𝐴𝑤𝐴 ) ∧ ( 𝑄𝑢 ∧ ¬ 𝑣 ( 𝑄 𝑢 ) ∧ ¬ 𝑤 ( ( 𝑄 𝑢 ) 𝑣 ) ) ) ∧ 𝑃𝑄 ) ∧ 𝑃 ( 𝑄 𝑢 ) ) → ( 𝑃𝑄 ∧ ¬ 𝑣 ( 𝑃 𝑄 ) ∧ ¬ 𝑤 ( ( 𝑃 𝑄 ) 𝑣 ) ) )
55 3simpc ( ( 𝑃𝑄 ∧ ¬ 𝑣 ( 𝑃 𝑄 ) ∧ ¬ 𝑤 ( ( 𝑃 𝑄 ) 𝑣 ) ) → ( ¬ 𝑣 ( 𝑃 𝑄 ) ∧ ¬ 𝑤 ( ( 𝑃 𝑄 ) 𝑣 ) ) )
56 54 55 syl ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑢𝐴𝑣𝐴𝑤𝐴 ) ∧ ( 𝑄𝑢 ∧ ¬ 𝑣 ( 𝑄 𝑢 ) ∧ ¬ 𝑤 ( ( 𝑄 𝑢 ) 𝑣 ) ) ) ∧ 𝑃𝑄 ) ∧ 𝑃 ( 𝑄 𝑢 ) ) → ( ¬ 𝑣 ( 𝑃 𝑄 ) ∧ ¬ 𝑤 ( ( 𝑃 𝑄 ) 𝑣 ) ) )
57 breq1 ( 𝑟 = 𝑣 → ( 𝑟 ( 𝑃 𝑄 ) ↔ 𝑣 ( 𝑃 𝑄 ) ) )
58 57 notbid ( 𝑟 = 𝑣 → ( ¬ 𝑟 ( 𝑃 𝑄 ) ↔ ¬ 𝑣 ( 𝑃 𝑄 ) ) )
59 oveq2 ( 𝑟 = 𝑣 → ( ( 𝑃 𝑄 ) 𝑟 ) = ( ( 𝑃 𝑄 ) 𝑣 ) )
60 59 breq2d ( 𝑟 = 𝑣 → ( 𝑠 ( ( 𝑃 𝑄 ) 𝑟 ) ↔ 𝑠 ( ( 𝑃 𝑄 ) 𝑣 ) ) )
61 60 notbid ( 𝑟 = 𝑣 → ( ¬ 𝑠 ( ( 𝑃 𝑄 ) 𝑟 ) ↔ ¬ 𝑠 ( ( 𝑃 𝑄 ) 𝑣 ) ) )
62 58 61 anbi12d ( 𝑟 = 𝑣 → ( ( ¬ 𝑟 ( 𝑃 𝑄 ) ∧ ¬ 𝑠 ( ( 𝑃 𝑄 ) 𝑟 ) ) ↔ ( ¬ 𝑣 ( 𝑃 𝑄 ) ∧ ¬ 𝑠 ( ( 𝑃 𝑄 ) 𝑣 ) ) ) )
63 breq1 ( 𝑠 = 𝑤 → ( 𝑠 ( ( 𝑃 𝑄 ) 𝑣 ) ↔ 𝑤 ( ( 𝑃 𝑄 ) 𝑣 ) ) )
64 63 notbid ( 𝑠 = 𝑤 → ( ¬ 𝑠 ( ( 𝑃 𝑄 ) 𝑣 ) ↔ ¬ 𝑤 ( ( 𝑃 𝑄 ) 𝑣 ) ) )
65 64 anbi2d ( 𝑠 = 𝑤 → ( ( ¬ 𝑣 ( 𝑃 𝑄 ) ∧ ¬ 𝑠 ( ( 𝑃 𝑄 ) 𝑣 ) ) ↔ ( ¬ 𝑣 ( 𝑃 𝑄 ) ∧ ¬ 𝑤 ( ( 𝑃 𝑄 ) 𝑣 ) ) ) )
66 62 65 rspc2ev ( ( 𝑣𝐴𝑤𝐴 ∧ ( ¬ 𝑣 ( 𝑃 𝑄 ) ∧ ¬ 𝑤 ( ( 𝑃 𝑄 ) 𝑣 ) ) ) → ∃ 𝑟𝐴𝑠𝐴 ( ¬ 𝑟 ( 𝑃 𝑄 ) ∧ ¬ 𝑠 ( ( 𝑃 𝑄 ) 𝑟 ) ) )
67 66 3expa ( ( ( 𝑣𝐴𝑤𝐴 ) ∧ ( ¬ 𝑣 ( 𝑃 𝑄 ) ∧ ¬ 𝑤 ( ( 𝑃 𝑄 ) 𝑣 ) ) ) → ∃ 𝑟𝐴𝑠𝐴 ( ¬ 𝑟 ( 𝑃 𝑄 ) ∧ ¬ 𝑠 ( ( 𝑃 𝑄 ) 𝑟 ) ) )
68 45 56 67 syl2anc ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑢𝐴𝑣𝐴𝑤𝐴 ) ∧ ( 𝑄𝑢 ∧ ¬ 𝑣 ( 𝑄 𝑢 ) ∧ ¬ 𝑤 ( ( 𝑄 𝑢 ) 𝑣 ) ) ) ∧ 𝑃𝑄 ) ∧ 𝑃 ( 𝑄 𝑢 ) ) → ∃ 𝑟𝐴𝑠𝐴 ( ¬ 𝑟 ( 𝑃 𝑄 ) ∧ ¬ 𝑠 ( ( 𝑃 𝑄 ) 𝑟 ) ) )
69 21 43 jca ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑢𝐴𝑣𝐴𝑤𝐴 ) ∧ ( 𝑄𝑢 ∧ ¬ 𝑣 ( 𝑄 𝑢 ) ∧ ¬ 𝑤 ( ( 𝑄 𝑢 ) 𝑣 ) ) ) → ( 𝑢𝐴𝑤𝐴 ) )
70 69 ad3antrrr ( ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑢𝐴𝑣𝐴𝑤𝐴 ) ∧ ( 𝑄𝑢 ∧ ¬ 𝑣 ( 𝑄 𝑢 ) ∧ ¬ 𝑤 ( ( 𝑄 𝑢 ) 𝑣 ) ) ) ∧ 𝑃𝑄 ) ∧ ¬ 𝑃 ( 𝑄 𝑢 ) ) ∧ 𝑃 ( ( 𝑄 𝑢 ) 𝑣 ) ) → ( 𝑢𝐴𝑤𝐴 ) )
71 simp1 ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑢𝐴𝑣𝐴𝑤𝐴 ) ∧ ( 𝑄𝑢 ∧ ¬ 𝑣 ( 𝑄 𝑢 ) ∧ ¬ 𝑤 ( ( 𝑄 𝑢 ) 𝑣 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) )
72 21 42 jca ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑢𝐴𝑣𝐴𝑤𝐴 ) ∧ ( 𝑄𝑢 ∧ ¬ 𝑣 ( 𝑄 𝑢 ) ∧ ¬ 𝑤 ( ( 𝑄 𝑢 ) 𝑣 ) ) ) → ( 𝑢𝐴𝑣𝐴 ) )
73 8 48 jca ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑢𝐴𝑣𝐴𝑤𝐴 ) ∧ ( 𝑄𝑢 ∧ ¬ 𝑣 ( 𝑄 𝑢 ) ∧ ¬ 𝑤 ( ( 𝑄 𝑢 ) 𝑣 ) ) ) → ( 𝑄𝑢 ∧ ¬ 𝑤 ( ( 𝑄 𝑢 ) 𝑣 ) ) )
74 71 72 73 3jca ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑢𝐴𝑣𝐴𝑤𝐴 ) ∧ ( 𝑄𝑢 ∧ ¬ 𝑣 ( 𝑄 𝑢 ) ∧ ¬ 𝑤 ( ( 𝑄 𝑢 ) 𝑣 ) ) ) → ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑢𝐴𝑣𝐴 ) ∧ ( 𝑄𝑢 ∧ ¬ 𝑤 ( ( 𝑄 𝑢 ) 𝑣 ) ) ) )
75 74 ad3antrrr ( ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑢𝐴𝑣𝐴𝑤𝐴 ) ∧ ( 𝑄𝑢 ∧ ¬ 𝑣 ( 𝑄 𝑢 ) ∧ ¬ 𝑤 ( ( 𝑄 𝑢 ) 𝑣 ) ) ) ∧ 𝑃𝑄 ) ∧ ¬ 𝑃 ( 𝑄 𝑢 ) ) ∧ 𝑃 ( ( 𝑄 𝑢 ) 𝑣 ) ) → ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑢𝐴𝑣𝐴 ) ∧ ( 𝑄𝑢 ∧ ¬ 𝑤 ( ( 𝑄 𝑢 ) 𝑣 ) ) ) )
76 simpllr ( ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑢𝐴𝑣𝐴𝑤𝐴 ) ∧ ( 𝑄𝑢 ∧ ¬ 𝑣 ( 𝑄 𝑢 ) ∧ ¬ 𝑤 ( ( 𝑄 𝑢 ) 𝑣 ) ) ) ∧ 𝑃𝑄 ) ∧ ¬ 𝑃 ( 𝑄 𝑢 ) ) ∧ 𝑃 ( ( 𝑄 𝑢 ) 𝑣 ) ) → 𝑃𝑄 )
77 simplr ( ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑢𝐴𝑣𝐴𝑤𝐴 ) ∧ ( 𝑄𝑢 ∧ ¬ 𝑣 ( 𝑄 𝑢 ) ∧ ¬ 𝑤 ( ( 𝑄 𝑢 ) 𝑣 ) ) ) ∧ 𝑃𝑄 ) ∧ ¬ 𝑃 ( 𝑄 𝑢 ) ) ∧ 𝑃 ( ( 𝑄 𝑢 ) 𝑣 ) ) → ¬ 𝑃 ( 𝑄 𝑢 ) )
78 simpr ( ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑢𝐴𝑣𝐴𝑤𝐴 ) ∧ ( 𝑄𝑢 ∧ ¬ 𝑣 ( 𝑄 𝑢 ) ∧ ¬ 𝑤 ( ( 𝑄 𝑢 ) 𝑣 ) ) ) ∧ 𝑃𝑄 ) ∧ ¬ 𝑃 ( 𝑄 𝑢 ) ) ∧ 𝑃 ( ( 𝑄 𝑢 ) 𝑣 ) ) → 𝑃 ( ( 𝑄 𝑢 ) 𝑣 ) )
79 1 2 3 3dimlem3 ( ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑢𝐴𝑣𝐴 ) ∧ ( 𝑄𝑢 ∧ ¬ 𝑤 ( ( 𝑄 𝑢 ) 𝑣 ) ) ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑃 ( 𝑄 𝑢 ) ∧ 𝑃 ( ( 𝑄 𝑢 ) 𝑣 ) ) ) → ( 𝑃𝑄 ∧ ¬ 𝑢 ( 𝑃 𝑄 ) ∧ ¬ 𝑤 ( ( 𝑃 𝑄 ) 𝑢 ) ) )
80 75 76 77 78 79 syl13anc ( ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑢𝐴𝑣𝐴𝑤𝐴 ) ∧ ( 𝑄𝑢 ∧ ¬ 𝑣 ( 𝑄 𝑢 ) ∧ ¬ 𝑤 ( ( 𝑄 𝑢 ) 𝑣 ) ) ) ∧ 𝑃𝑄 ) ∧ ¬ 𝑃 ( 𝑄 𝑢 ) ) ∧ 𝑃 ( ( 𝑄 𝑢 ) 𝑣 ) ) → ( 𝑃𝑄 ∧ ¬ 𝑢 ( 𝑃 𝑄 ) ∧ ¬ 𝑤 ( ( 𝑃 𝑄 ) 𝑢 ) ) )
81 3simpc ( ( 𝑃𝑄 ∧ ¬ 𝑢 ( 𝑃 𝑄 ) ∧ ¬ 𝑤 ( ( 𝑃 𝑄 ) 𝑢 ) ) → ( ¬ 𝑢 ( 𝑃 𝑄 ) ∧ ¬ 𝑤 ( ( 𝑃 𝑄 ) 𝑢 ) ) )
82 80 81 syl ( ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑢𝐴𝑣𝐴𝑤𝐴 ) ∧ ( 𝑄𝑢 ∧ ¬ 𝑣 ( 𝑄 𝑢 ) ∧ ¬ 𝑤 ( ( 𝑄 𝑢 ) 𝑣 ) ) ) ∧ 𝑃𝑄 ) ∧ ¬ 𝑃 ( 𝑄 𝑢 ) ) ∧ 𝑃 ( ( 𝑄 𝑢 ) 𝑣 ) ) → ( ¬ 𝑢 ( 𝑃 𝑄 ) ∧ ¬ 𝑤 ( ( 𝑃 𝑄 ) 𝑢 ) ) )
83 breq1 ( 𝑠 = 𝑤 → ( 𝑠 ( ( 𝑃 𝑄 ) 𝑢 ) ↔ 𝑤 ( ( 𝑃 𝑄 ) 𝑢 ) ) )
84 83 notbid ( 𝑠 = 𝑤 → ( ¬ 𝑠 ( ( 𝑃 𝑄 ) 𝑢 ) ↔ ¬ 𝑤 ( ( 𝑃 𝑄 ) 𝑢 ) ) )
85 84 anbi2d ( 𝑠 = 𝑤 → ( ( ¬ 𝑢 ( 𝑃 𝑄 ) ∧ ¬ 𝑠 ( ( 𝑃 𝑄 ) 𝑢 ) ) ↔ ( ¬ 𝑢 ( 𝑃 𝑄 ) ∧ ¬ 𝑤 ( ( 𝑃 𝑄 ) 𝑢 ) ) ) )
86 36 85 rspc2ev ( ( 𝑢𝐴𝑤𝐴 ∧ ( ¬ 𝑢 ( 𝑃 𝑄 ) ∧ ¬ 𝑤 ( ( 𝑃 𝑄 ) 𝑢 ) ) ) → ∃ 𝑟𝐴𝑠𝐴 ( ¬ 𝑟 ( 𝑃 𝑄 ) ∧ ¬ 𝑠 ( ( 𝑃 𝑄 ) 𝑟 ) ) )
87 86 3expa ( ( ( 𝑢𝐴𝑤𝐴 ) ∧ ( ¬ 𝑢 ( 𝑃 𝑄 ) ∧ ¬ 𝑤 ( ( 𝑃 𝑄 ) 𝑢 ) ) ) → ∃ 𝑟𝐴𝑠𝐴 ( ¬ 𝑟 ( 𝑃 𝑄 ) ∧ ¬ 𝑠 ( ( 𝑃 𝑄 ) 𝑟 ) ) )
88 70 82 87 syl2anc ( ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑢𝐴𝑣𝐴𝑤𝐴 ) ∧ ( 𝑄𝑢 ∧ ¬ 𝑣 ( 𝑄 𝑢 ) ∧ ¬ 𝑤 ( ( 𝑄 𝑢 ) 𝑣 ) ) ) ∧ 𝑃𝑄 ) ∧ ¬ 𝑃 ( 𝑄 𝑢 ) ) ∧ 𝑃 ( ( 𝑄 𝑢 ) 𝑣 ) ) → ∃ 𝑟𝐴𝑠𝐴 ( ¬ 𝑟 ( 𝑃 𝑄 ) ∧ ¬ 𝑠 ( ( 𝑃 𝑄 ) 𝑟 ) ) )
89 72 ad3antrrr ( ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑢𝐴𝑣𝐴𝑤𝐴 ) ∧ ( 𝑄𝑢 ∧ ¬ 𝑣 ( 𝑄 𝑢 ) ∧ ¬ 𝑤 ( ( 𝑄 𝑢 ) 𝑣 ) ) ) ∧ 𝑃𝑄 ) ∧ ¬ 𝑃 ( 𝑄 𝑢 ) ) ∧ ¬ 𝑃 ( ( 𝑄 𝑢 ) 𝑣 ) ) → ( 𝑢𝐴𝑣𝐴 ) )
90 8 47 jca ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑢𝐴𝑣𝐴𝑤𝐴 ) ∧ ( 𝑄𝑢 ∧ ¬ 𝑣 ( 𝑄 𝑢 ) ∧ ¬ 𝑤 ( ( 𝑄 𝑢 ) 𝑣 ) ) ) → ( 𝑄𝑢 ∧ ¬ 𝑣 ( 𝑄 𝑢 ) ) )
91 71 72 90 3jca ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑢𝐴𝑣𝐴𝑤𝐴 ) ∧ ( 𝑄𝑢 ∧ ¬ 𝑣 ( 𝑄 𝑢 ) ∧ ¬ 𝑤 ( ( 𝑄 𝑢 ) 𝑣 ) ) ) → ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑢𝐴𝑣𝐴 ) ∧ ( 𝑄𝑢 ∧ ¬ 𝑣 ( 𝑄 𝑢 ) ) ) )
92 91 ad3antrrr ( ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑢𝐴𝑣𝐴𝑤𝐴 ) ∧ ( 𝑄𝑢 ∧ ¬ 𝑣 ( 𝑄 𝑢 ) ∧ ¬ 𝑤 ( ( 𝑄 𝑢 ) 𝑣 ) ) ) ∧ 𝑃𝑄 ) ∧ ¬ 𝑃 ( 𝑄 𝑢 ) ) ∧ ¬ 𝑃 ( ( 𝑄 𝑢 ) 𝑣 ) ) → ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑢𝐴𝑣𝐴 ) ∧ ( 𝑄𝑢 ∧ ¬ 𝑣 ( 𝑄 𝑢 ) ) ) )
93 simpllr ( ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑢𝐴𝑣𝐴𝑤𝐴 ) ∧ ( 𝑄𝑢 ∧ ¬ 𝑣 ( 𝑄 𝑢 ) ∧ ¬ 𝑤 ( ( 𝑄 𝑢 ) 𝑣 ) ) ) ∧ 𝑃𝑄 ) ∧ ¬ 𝑃 ( 𝑄 𝑢 ) ) ∧ ¬ 𝑃 ( ( 𝑄 𝑢 ) 𝑣 ) ) → 𝑃𝑄 )
94 simplr ( ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑢𝐴𝑣𝐴𝑤𝐴 ) ∧ ( 𝑄𝑢 ∧ ¬ 𝑣 ( 𝑄 𝑢 ) ∧ ¬ 𝑤 ( ( 𝑄 𝑢 ) 𝑣 ) ) ) ∧ 𝑃𝑄 ) ∧ ¬ 𝑃 ( 𝑄 𝑢 ) ) ∧ ¬ 𝑃 ( ( 𝑄 𝑢 ) 𝑣 ) ) → ¬ 𝑃 ( 𝑄 𝑢 ) )
95 simpr ( ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑢𝐴𝑣𝐴𝑤𝐴 ) ∧ ( 𝑄𝑢 ∧ ¬ 𝑣 ( 𝑄 𝑢 ) ∧ ¬ 𝑤 ( ( 𝑄 𝑢 ) 𝑣 ) ) ) ∧ 𝑃𝑄 ) ∧ ¬ 𝑃 ( 𝑄 𝑢 ) ) ∧ ¬ 𝑃 ( ( 𝑄 𝑢 ) 𝑣 ) ) → ¬ 𝑃 ( ( 𝑄 𝑢 ) 𝑣 ) )
96 1 2 3 3dimlem4 ( ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑢𝐴𝑣𝐴 ) ∧ ( 𝑄𝑢 ∧ ¬ 𝑣 ( 𝑄 𝑢 ) ) ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑃 ( 𝑄 𝑢 ) ) ∧ ¬ 𝑃 ( ( 𝑄 𝑢 ) 𝑣 ) ) → ( 𝑃𝑄 ∧ ¬ 𝑢 ( 𝑃 𝑄 ) ∧ ¬ 𝑣 ( ( 𝑃 𝑄 ) 𝑢 ) ) )
97 92 93 94 95 96 syl121anc ( ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑢𝐴𝑣𝐴𝑤𝐴 ) ∧ ( 𝑄𝑢 ∧ ¬ 𝑣 ( 𝑄 𝑢 ) ∧ ¬ 𝑤 ( ( 𝑄 𝑢 ) 𝑣 ) ) ) ∧ 𝑃𝑄 ) ∧ ¬ 𝑃 ( 𝑄 𝑢 ) ) ∧ ¬ 𝑃 ( ( 𝑄 𝑢 ) 𝑣 ) ) → ( 𝑃𝑄 ∧ ¬ 𝑢 ( 𝑃 𝑄 ) ∧ ¬ 𝑣 ( ( 𝑃 𝑄 ) 𝑢 ) ) )
98 3simpc ( ( 𝑃𝑄 ∧ ¬ 𝑢 ( 𝑃 𝑄 ) ∧ ¬ 𝑣 ( ( 𝑃 𝑄 ) 𝑢 ) ) → ( ¬ 𝑢 ( 𝑃 𝑄 ) ∧ ¬ 𝑣 ( ( 𝑃 𝑄 ) 𝑢 ) ) )
99 97 98 syl ( ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑢𝐴𝑣𝐴𝑤𝐴 ) ∧ ( 𝑄𝑢 ∧ ¬ 𝑣 ( 𝑄 𝑢 ) ∧ ¬ 𝑤 ( ( 𝑄 𝑢 ) 𝑣 ) ) ) ∧ 𝑃𝑄 ) ∧ ¬ 𝑃 ( 𝑄 𝑢 ) ) ∧ ¬ 𝑃 ( ( 𝑄 𝑢 ) 𝑣 ) ) → ( ¬ 𝑢 ( 𝑃 𝑄 ) ∧ ¬ 𝑣 ( ( 𝑃 𝑄 ) 𝑢 ) ) )
100 40 3expa ( ( ( 𝑢𝐴𝑣𝐴 ) ∧ ( ¬ 𝑢 ( 𝑃 𝑄 ) ∧ ¬ 𝑣 ( ( 𝑃 𝑄 ) 𝑢 ) ) ) → ∃ 𝑟𝐴𝑠𝐴 ( ¬ 𝑟 ( 𝑃 𝑄 ) ∧ ¬ 𝑠 ( ( 𝑃 𝑄 ) 𝑟 ) ) )
101 89 99 100 syl2anc ( ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑢𝐴𝑣𝐴𝑤𝐴 ) ∧ ( 𝑄𝑢 ∧ ¬ 𝑣 ( 𝑄 𝑢 ) ∧ ¬ 𝑤 ( ( 𝑄 𝑢 ) 𝑣 ) ) ) ∧ 𝑃𝑄 ) ∧ ¬ 𝑃 ( 𝑄 𝑢 ) ) ∧ ¬ 𝑃 ( ( 𝑄 𝑢 ) 𝑣 ) ) → ∃ 𝑟𝐴𝑠𝐴 ( ¬ 𝑟 ( 𝑃 𝑄 ) ∧ ¬ 𝑠 ( ( 𝑃 𝑄 ) 𝑟 ) ) )
102 88 101 pm2.61dan ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑢𝐴𝑣𝐴𝑤𝐴 ) ∧ ( 𝑄𝑢 ∧ ¬ 𝑣 ( 𝑄 𝑢 ) ∧ ¬ 𝑤 ( ( 𝑄 𝑢 ) 𝑣 ) ) ) ∧ 𝑃𝑄 ) ∧ ¬ 𝑃 ( 𝑄 𝑢 ) ) → ∃ 𝑟𝐴𝑠𝐴 ( ¬ 𝑟 ( 𝑃 𝑄 ) ∧ ¬ 𝑠 ( ( 𝑃 𝑄 ) 𝑟 ) ) )
103 68 102 pm2.61dan ( ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑢𝐴𝑣𝐴𝑤𝐴 ) ∧ ( 𝑄𝑢 ∧ ¬ 𝑣 ( 𝑄 𝑢 ) ∧ ¬ 𝑤 ( ( 𝑄 𝑢 ) 𝑣 ) ) ) ∧ 𝑃𝑄 ) → ∃ 𝑟𝐴𝑠𝐴 ( ¬ 𝑟 ( 𝑃 𝑄 ) ∧ ¬ 𝑠 ( ( 𝑃 𝑄 ) 𝑟 ) ) )
104 41 103 pm2.61dane ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑢𝐴𝑣𝐴𝑤𝐴 ) ∧ ( 𝑄𝑢 ∧ ¬ 𝑣 ( 𝑄 𝑢 ) ∧ ¬ 𝑤 ( ( 𝑄 𝑢 ) 𝑣 ) ) ) → ∃ 𝑟𝐴𝑠𝐴 ( ¬ 𝑟 ( 𝑃 𝑄 ) ∧ ¬ 𝑠 ( ( 𝑃 𝑄 ) 𝑟 ) ) )
105 104 3exp ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) → ( ( 𝑢𝐴𝑣𝐴𝑤𝐴 ) → ( ( 𝑄𝑢 ∧ ¬ 𝑣 ( 𝑄 𝑢 ) ∧ ¬ 𝑤 ( ( 𝑄 𝑢 ) 𝑣 ) ) → ∃ 𝑟𝐴𝑠𝐴 ( ¬ 𝑟 ( 𝑃 𝑄 ) ∧ ¬ 𝑠 ( ( 𝑃 𝑄 ) 𝑟 ) ) ) ) )
106 105 3expd ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) → ( 𝑢𝐴 → ( 𝑣𝐴 → ( 𝑤𝐴 → ( ( 𝑄𝑢 ∧ ¬ 𝑣 ( 𝑄 𝑢 ) ∧ ¬ 𝑤 ( ( 𝑄 𝑢 ) 𝑣 ) ) → ∃ 𝑟𝐴𝑠𝐴 ( ¬ 𝑟 ( 𝑃 𝑄 ) ∧ ¬ 𝑠 ( ( 𝑃 𝑄 ) 𝑟 ) ) ) ) ) ) )
107 106 imp32 ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑢𝐴𝑣𝐴 ) ) → ( 𝑤𝐴 → ( ( 𝑄𝑢 ∧ ¬ 𝑣 ( 𝑄 𝑢 ) ∧ ¬ 𝑤 ( ( 𝑄 𝑢 ) 𝑣 ) ) → ∃ 𝑟𝐴𝑠𝐴 ( ¬ 𝑟 ( 𝑃 𝑄 ) ∧ ¬ 𝑠 ( ( 𝑃 𝑄 ) 𝑟 ) ) ) ) )
108 107 rexlimdv ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑢𝐴𝑣𝐴 ) ) → ( ∃ 𝑤𝐴 ( 𝑄𝑢 ∧ ¬ 𝑣 ( 𝑄 𝑢 ) ∧ ¬ 𝑤 ( ( 𝑄 𝑢 ) 𝑣 ) ) → ∃ 𝑟𝐴𝑠𝐴 ( ¬ 𝑟 ( 𝑃 𝑄 ) ∧ ¬ 𝑠 ( ( 𝑃 𝑄 ) 𝑟 ) ) ) )
109 108 rexlimdvva ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) → ( ∃ 𝑢𝐴𝑣𝐴𝑤𝐴 ( 𝑄𝑢 ∧ ¬ 𝑣 ( 𝑄 𝑢 ) ∧ ¬ 𝑤 ( ( 𝑄 𝑢 ) 𝑣 ) ) → ∃ 𝑟𝐴𝑠𝐴 ( ¬ 𝑟 ( 𝑃 𝑄 ) ∧ ¬ 𝑠 ( ( 𝑃 𝑄 ) 𝑟 ) ) ) )
110 5 109 mpd ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) → ∃ 𝑟𝐴𝑠𝐴 ( ¬ 𝑟 ( 𝑃 𝑄 ) ∧ ¬ 𝑠 ( ( 𝑃 𝑄 ) 𝑟 ) ) )