Metamath Proof Explorer


Theorem 3dimlem2

Description: Lemma for 3dim1 . (Contributed by NM, 25-Jul-2012)

Ref Expression
Hypotheses 3dim0.j = ( join ‘ 𝐾 )
3dim0.l = ( le ‘ 𝐾 )
3dim0.a 𝐴 = ( Atoms ‘ 𝐾 )
Assertion 3dimlem2 ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑆 ( 𝑄 𝑅 ) ∧ ¬ 𝑇 ( ( 𝑄 𝑅 ) 𝑆 ) ) ∧ ( 𝑃𝑄𝑃 ( 𝑄 𝑅 ) ) ) → ( 𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ∧ ¬ 𝑇 ( ( 𝑃 𝑄 ) 𝑆 ) ) )

Proof

Step Hyp Ref Expression
1 3dim0.j = ( join ‘ 𝐾 )
2 3dim0.l = ( le ‘ 𝐾 )
3 3dim0.a 𝐴 = ( Atoms ‘ 𝐾 )
4 simp3l ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑆 ( 𝑄 𝑅 ) ∧ ¬ 𝑇 ( ( 𝑄 𝑅 ) 𝑆 ) ) ∧ ( 𝑃𝑄𝑃 ( 𝑄 𝑅 ) ) ) → 𝑃𝑄 )
5 simp22 ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑆 ( 𝑄 𝑅 ) ∧ ¬ 𝑇 ( ( 𝑄 𝑅 ) 𝑆 ) ) ∧ ( 𝑃𝑄𝑃 ( 𝑄 𝑅 ) ) ) → ¬ 𝑆 ( 𝑄 𝑅 ) )
6 1 3 hlatjcom ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) → ( 𝑃 𝑄 ) = ( 𝑄 𝑃 ) )
7 6 3ad2ant1 ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑆 ( 𝑄 𝑅 ) ∧ ¬ 𝑇 ( ( 𝑄 𝑅 ) 𝑆 ) ) ∧ ( 𝑃𝑄𝑃 ( 𝑄 𝑅 ) ) ) → ( 𝑃 𝑄 ) = ( 𝑄 𝑃 ) )
8 simp3r ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑆 ( 𝑄 𝑅 ) ∧ ¬ 𝑇 ( ( 𝑄 𝑅 ) 𝑆 ) ) ∧ ( 𝑃𝑄𝑃 ( 𝑄 𝑅 ) ) ) → 𝑃 ( 𝑄 𝑅 ) )
9 simp11 ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑆 ( 𝑄 𝑅 ) ∧ ¬ 𝑇 ( ( 𝑄 𝑅 ) 𝑆 ) ) ∧ ( 𝑃𝑄𝑃 ( 𝑄 𝑅 ) ) ) → 𝐾 ∈ HL )
10 simp12 ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑆 ( 𝑄 𝑅 ) ∧ ¬ 𝑇 ( ( 𝑄 𝑅 ) 𝑆 ) ) ∧ ( 𝑃𝑄𝑃 ( 𝑄 𝑅 ) ) ) → 𝑃𝐴 )
11 simp21 ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑆 ( 𝑄 𝑅 ) ∧ ¬ 𝑇 ( ( 𝑄 𝑅 ) 𝑆 ) ) ∧ ( 𝑃𝑄𝑃 ( 𝑄 𝑅 ) ) ) → 𝑅𝐴 )
12 simp13 ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑆 ( 𝑄 𝑅 ) ∧ ¬ 𝑇 ( ( 𝑄 𝑅 ) 𝑆 ) ) ∧ ( 𝑃𝑄𝑃 ( 𝑄 𝑅 ) ) ) → 𝑄𝐴 )
13 2 1 3 hlatexchb1 ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑅𝐴𝑄𝐴 ) ∧ 𝑃𝑄 ) → ( 𝑃 ( 𝑄 𝑅 ) ↔ ( 𝑄 𝑃 ) = ( 𝑄 𝑅 ) ) )
14 9 10 11 12 4 13 syl131anc ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑆 ( 𝑄 𝑅 ) ∧ ¬ 𝑇 ( ( 𝑄 𝑅 ) 𝑆 ) ) ∧ ( 𝑃𝑄𝑃 ( 𝑄 𝑅 ) ) ) → ( 𝑃 ( 𝑄 𝑅 ) ↔ ( 𝑄 𝑃 ) = ( 𝑄 𝑅 ) ) )
15 8 14 mpbid ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑆 ( 𝑄 𝑅 ) ∧ ¬ 𝑇 ( ( 𝑄 𝑅 ) 𝑆 ) ) ∧ ( 𝑃𝑄𝑃 ( 𝑄 𝑅 ) ) ) → ( 𝑄 𝑃 ) = ( 𝑄 𝑅 ) )
16 7 15 eqtrd ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑆 ( 𝑄 𝑅 ) ∧ ¬ 𝑇 ( ( 𝑄 𝑅 ) 𝑆 ) ) ∧ ( 𝑃𝑄𝑃 ( 𝑄 𝑅 ) ) ) → ( 𝑃 𝑄 ) = ( 𝑄 𝑅 ) )
17 16 breq2d ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑆 ( 𝑄 𝑅 ) ∧ ¬ 𝑇 ( ( 𝑄 𝑅 ) 𝑆 ) ) ∧ ( 𝑃𝑄𝑃 ( 𝑄 𝑅 ) ) ) → ( 𝑆 ( 𝑃 𝑄 ) ↔ 𝑆 ( 𝑄 𝑅 ) ) )
18 5 17 mtbird ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑆 ( 𝑄 𝑅 ) ∧ ¬ 𝑇 ( ( 𝑄 𝑅 ) 𝑆 ) ) ∧ ( 𝑃𝑄𝑃 ( 𝑄 𝑅 ) ) ) → ¬ 𝑆 ( 𝑃 𝑄 ) )
19 simp23 ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑆 ( 𝑄 𝑅 ) ∧ ¬ 𝑇 ( ( 𝑄 𝑅 ) 𝑆 ) ) ∧ ( 𝑃𝑄𝑃 ( 𝑄 𝑅 ) ) ) → ¬ 𝑇 ( ( 𝑄 𝑅 ) 𝑆 ) )
20 16 oveq1d ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑆 ( 𝑄 𝑅 ) ∧ ¬ 𝑇 ( ( 𝑄 𝑅 ) 𝑆 ) ) ∧ ( 𝑃𝑄𝑃 ( 𝑄 𝑅 ) ) ) → ( ( 𝑃 𝑄 ) 𝑆 ) = ( ( 𝑄 𝑅 ) 𝑆 ) )
21 20 breq2d ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑆 ( 𝑄 𝑅 ) ∧ ¬ 𝑇 ( ( 𝑄 𝑅 ) 𝑆 ) ) ∧ ( 𝑃𝑄𝑃 ( 𝑄 𝑅 ) ) ) → ( 𝑇 ( ( 𝑃 𝑄 ) 𝑆 ) ↔ 𝑇 ( ( 𝑄 𝑅 ) 𝑆 ) ) )
22 19 21 mtbird ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑆 ( 𝑄 𝑅 ) ∧ ¬ 𝑇 ( ( 𝑄 𝑅 ) 𝑆 ) ) ∧ ( 𝑃𝑄𝑃 ( 𝑄 𝑅 ) ) ) → ¬ 𝑇 ( ( 𝑃 𝑄 ) 𝑆 ) )
23 4 18 22 3jca ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑆 ( 𝑄 𝑅 ) ∧ ¬ 𝑇 ( ( 𝑄 𝑅 ) 𝑆 ) ) ∧ ( 𝑃𝑄𝑃 ( 𝑄 𝑅 ) ) ) → ( 𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ∧ ¬ 𝑇 ( ( 𝑃 𝑄 ) 𝑆 ) ) )