Step |
Hyp |
Ref |
Expression |
1 |
|
3dim0.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
2 |
|
3dim0.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
3dim0.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
4 |
|
simp3l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑆 ≤ ( 𝑄 ∨ 𝑅 ) ∧ ¬ 𝑇 ≤ ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑆 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑃 ≤ ( 𝑄 ∨ 𝑅 ) ) ) → 𝑃 ≠ 𝑄 ) |
5 |
|
simp22 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑆 ≤ ( 𝑄 ∨ 𝑅 ) ∧ ¬ 𝑇 ≤ ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑆 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑃 ≤ ( 𝑄 ∨ 𝑅 ) ) ) → ¬ 𝑆 ≤ ( 𝑄 ∨ 𝑅 ) ) |
6 |
1 3
|
hlatjcom |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → ( 𝑃 ∨ 𝑄 ) = ( 𝑄 ∨ 𝑃 ) ) |
7 |
6
|
3ad2ant1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑆 ≤ ( 𝑄 ∨ 𝑅 ) ∧ ¬ 𝑇 ≤ ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑆 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑃 ≤ ( 𝑄 ∨ 𝑅 ) ) ) → ( 𝑃 ∨ 𝑄 ) = ( 𝑄 ∨ 𝑃 ) ) |
8 |
|
simp3r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑆 ≤ ( 𝑄 ∨ 𝑅 ) ∧ ¬ 𝑇 ≤ ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑆 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑃 ≤ ( 𝑄 ∨ 𝑅 ) ) ) → 𝑃 ≤ ( 𝑄 ∨ 𝑅 ) ) |
9 |
|
simp11 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑆 ≤ ( 𝑄 ∨ 𝑅 ) ∧ ¬ 𝑇 ≤ ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑆 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑃 ≤ ( 𝑄 ∨ 𝑅 ) ) ) → 𝐾 ∈ HL ) |
10 |
|
simp12 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑆 ≤ ( 𝑄 ∨ 𝑅 ) ∧ ¬ 𝑇 ≤ ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑆 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑃 ≤ ( 𝑄 ∨ 𝑅 ) ) ) → 𝑃 ∈ 𝐴 ) |
11 |
|
simp21 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑆 ≤ ( 𝑄 ∨ 𝑅 ) ∧ ¬ 𝑇 ≤ ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑆 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑃 ≤ ( 𝑄 ∨ 𝑅 ) ) ) → 𝑅 ∈ 𝐴 ) |
12 |
|
simp13 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑆 ≤ ( 𝑄 ∨ 𝑅 ) ∧ ¬ 𝑇 ≤ ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑆 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑃 ≤ ( 𝑄 ∨ 𝑅 ) ) ) → 𝑄 ∈ 𝐴 ) |
13 |
2 1 3
|
hlatexchb1 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) → ( 𝑃 ≤ ( 𝑄 ∨ 𝑅 ) ↔ ( 𝑄 ∨ 𝑃 ) = ( 𝑄 ∨ 𝑅 ) ) ) |
14 |
9 10 11 12 4 13
|
syl131anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑆 ≤ ( 𝑄 ∨ 𝑅 ) ∧ ¬ 𝑇 ≤ ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑆 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑃 ≤ ( 𝑄 ∨ 𝑅 ) ) ) → ( 𝑃 ≤ ( 𝑄 ∨ 𝑅 ) ↔ ( 𝑄 ∨ 𝑃 ) = ( 𝑄 ∨ 𝑅 ) ) ) |
15 |
8 14
|
mpbid |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑆 ≤ ( 𝑄 ∨ 𝑅 ) ∧ ¬ 𝑇 ≤ ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑆 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑃 ≤ ( 𝑄 ∨ 𝑅 ) ) ) → ( 𝑄 ∨ 𝑃 ) = ( 𝑄 ∨ 𝑅 ) ) |
16 |
7 15
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑆 ≤ ( 𝑄 ∨ 𝑅 ) ∧ ¬ 𝑇 ≤ ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑆 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑃 ≤ ( 𝑄 ∨ 𝑅 ) ) ) → ( 𝑃 ∨ 𝑄 ) = ( 𝑄 ∨ 𝑅 ) ) |
17 |
16
|
breq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑆 ≤ ( 𝑄 ∨ 𝑅 ) ∧ ¬ 𝑇 ≤ ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑆 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑃 ≤ ( 𝑄 ∨ 𝑅 ) ) ) → ( 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ↔ 𝑆 ≤ ( 𝑄 ∨ 𝑅 ) ) ) |
18 |
5 17
|
mtbird |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑆 ≤ ( 𝑄 ∨ 𝑅 ) ∧ ¬ 𝑇 ≤ ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑆 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑃 ≤ ( 𝑄 ∨ 𝑅 ) ) ) → ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) |
19 |
|
simp23 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑆 ≤ ( 𝑄 ∨ 𝑅 ) ∧ ¬ 𝑇 ≤ ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑆 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑃 ≤ ( 𝑄 ∨ 𝑅 ) ) ) → ¬ 𝑇 ≤ ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑆 ) ) |
20 |
16
|
oveq1d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑆 ≤ ( 𝑄 ∨ 𝑅 ) ∧ ¬ 𝑇 ≤ ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑆 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑃 ≤ ( 𝑄 ∨ 𝑅 ) ) ) → ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑆 ) = ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑆 ) ) |
21 |
20
|
breq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑆 ≤ ( 𝑄 ∨ 𝑅 ) ∧ ¬ 𝑇 ≤ ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑆 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑃 ≤ ( 𝑄 ∨ 𝑅 ) ) ) → ( 𝑇 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑆 ) ↔ 𝑇 ≤ ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑆 ) ) ) |
22 |
19 21
|
mtbird |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑆 ≤ ( 𝑄 ∨ 𝑅 ) ∧ ¬ 𝑇 ≤ ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑆 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑃 ≤ ( 𝑄 ∨ 𝑅 ) ) ) → ¬ 𝑇 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑆 ) ) |
23 |
4 18 22
|
3jca |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑆 ≤ ( 𝑄 ∨ 𝑅 ) ∧ ¬ 𝑇 ≤ ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑆 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑃 ≤ ( 𝑄 ∨ 𝑅 ) ) ) → ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑆 ) ) ) |