Step |
Hyp |
Ref |
Expression |
1 |
|
3dim0.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
2 |
|
3dim0.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
3dim0.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
4 |
|
simp2l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑅 ∧ ¬ 𝑆 ≤ ( 𝑄 ∨ 𝑅 ) ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑃 ≤ ( 𝑄 ∨ 𝑅 ) ) ∧ ¬ 𝑃 ≤ ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑆 ) ) → 𝑃 ≠ 𝑄 ) |
5 |
|
simp2r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑅 ∧ ¬ 𝑆 ≤ ( 𝑄 ∨ 𝑅 ) ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑃 ≤ ( 𝑄 ∨ 𝑅 ) ) ∧ ¬ 𝑃 ≤ ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑆 ) ) → ¬ 𝑃 ≤ ( 𝑄 ∨ 𝑅 ) ) |
6 |
|
simp11 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑅 ∧ ¬ 𝑆 ≤ ( 𝑄 ∨ 𝑅 ) ) ) → 𝐾 ∈ HL ) |
7 |
|
simp2l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑅 ∧ ¬ 𝑆 ≤ ( 𝑄 ∨ 𝑅 ) ) ) → 𝑅 ∈ 𝐴 ) |
8 |
|
simp12 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑅 ∧ ¬ 𝑆 ≤ ( 𝑄 ∨ 𝑅 ) ) ) → 𝑃 ∈ 𝐴 ) |
9 |
|
simp13 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑅 ∧ ¬ 𝑆 ≤ ( 𝑄 ∨ 𝑅 ) ) ) → 𝑄 ∈ 𝐴 ) |
10 |
|
simp3l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑅 ∧ ¬ 𝑆 ≤ ( 𝑄 ∨ 𝑅 ) ) ) → 𝑄 ≠ 𝑅 ) |
11 |
10
|
necomd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑅 ∧ ¬ 𝑆 ≤ ( 𝑄 ∨ 𝑅 ) ) ) → 𝑅 ≠ 𝑄 ) |
12 |
2 1 3
|
hlatexch2 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑅 ≠ 𝑄 ) → ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) → 𝑃 ≤ ( 𝑅 ∨ 𝑄 ) ) ) |
13 |
6 7 8 9 11 12
|
syl131anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑅 ∧ ¬ 𝑆 ≤ ( 𝑄 ∨ 𝑅 ) ) ) → ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) → 𝑃 ≤ ( 𝑅 ∨ 𝑄 ) ) ) |
14 |
1 3
|
hlatjcom |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) → ( 𝑄 ∨ 𝑅 ) = ( 𝑅 ∨ 𝑄 ) ) |
15 |
6 9 7 14
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑅 ∧ ¬ 𝑆 ≤ ( 𝑄 ∨ 𝑅 ) ) ) → ( 𝑄 ∨ 𝑅 ) = ( 𝑅 ∨ 𝑄 ) ) |
16 |
15
|
breq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑅 ∧ ¬ 𝑆 ≤ ( 𝑄 ∨ 𝑅 ) ) ) → ( 𝑃 ≤ ( 𝑄 ∨ 𝑅 ) ↔ 𝑃 ≤ ( 𝑅 ∨ 𝑄 ) ) ) |
17 |
13 16
|
sylibrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑅 ∧ ¬ 𝑆 ≤ ( 𝑄 ∨ 𝑅 ) ) ) → ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) → 𝑃 ≤ ( 𝑄 ∨ 𝑅 ) ) ) |
18 |
17
|
3ad2ant1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑅 ∧ ¬ 𝑆 ≤ ( 𝑄 ∨ 𝑅 ) ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑃 ≤ ( 𝑄 ∨ 𝑅 ) ) ∧ ¬ 𝑃 ≤ ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑆 ) ) → ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) → 𝑃 ≤ ( 𝑄 ∨ 𝑅 ) ) ) |
19 |
5 18
|
mtod |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑅 ∧ ¬ 𝑆 ≤ ( 𝑄 ∨ 𝑅 ) ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑃 ≤ ( 𝑄 ∨ 𝑅 ) ) ∧ ¬ 𝑃 ≤ ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑆 ) ) → ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) |
20 |
|
simp3 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑅 ∧ ¬ 𝑆 ≤ ( 𝑄 ∨ 𝑅 ) ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑃 ≤ ( 𝑄 ∨ 𝑅 ) ) ∧ ¬ 𝑃 ≤ ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑆 ) ) → ¬ 𝑃 ≤ ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑆 ) ) |
21 |
|
hllat |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ Lat ) |
22 |
6 21
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑅 ∧ ¬ 𝑆 ≤ ( 𝑄 ∨ 𝑅 ) ) ) → 𝐾 ∈ Lat ) |
23 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
24 |
23 3
|
atbase |
⊢ ( 𝑄 ∈ 𝐴 → 𝑄 ∈ ( Base ‘ 𝐾 ) ) |
25 |
9 24
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑅 ∧ ¬ 𝑆 ≤ ( 𝑄 ∨ 𝑅 ) ) ) → 𝑄 ∈ ( Base ‘ 𝐾 ) ) |
26 |
23 3
|
atbase |
⊢ ( 𝑅 ∈ 𝐴 → 𝑅 ∈ ( Base ‘ 𝐾 ) ) |
27 |
7 26
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑅 ∧ ¬ 𝑆 ≤ ( 𝑄 ∨ 𝑅 ) ) ) → 𝑅 ∈ ( Base ‘ 𝐾 ) ) |
28 |
23 3
|
atbase |
⊢ ( 𝑃 ∈ 𝐴 → 𝑃 ∈ ( Base ‘ 𝐾 ) ) |
29 |
8 28
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑅 ∧ ¬ 𝑆 ≤ ( 𝑄 ∨ 𝑅 ) ) ) → 𝑃 ∈ ( Base ‘ 𝐾 ) ) |
30 |
23 1
|
latjrot |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑄 ∈ ( Base ‘ 𝐾 ) ∧ 𝑅 ∈ ( Base ‘ 𝐾 ) ∧ 𝑃 ∈ ( Base ‘ 𝐾 ) ) ) → ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑃 ) = ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) |
31 |
22 25 27 29 30
|
syl13anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑅 ∧ ¬ 𝑆 ≤ ( 𝑄 ∨ 𝑅 ) ) ) → ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑃 ) = ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) |
32 |
31
|
breq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑅 ∧ ¬ 𝑆 ≤ ( 𝑄 ∨ 𝑅 ) ) ) → ( 𝑆 ≤ ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑃 ) ↔ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ) |
33 |
|
simp2r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑅 ∧ ¬ 𝑆 ≤ ( 𝑄 ∨ 𝑅 ) ) ) → 𝑆 ∈ 𝐴 ) |
34 |
23 1 3
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) → ( 𝑄 ∨ 𝑅 ) ∈ ( Base ‘ 𝐾 ) ) |
35 |
6 9 7 34
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑅 ∧ ¬ 𝑆 ≤ ( 𝑄 ∨ 𝑅 ) ) ) → ( 𝑄 ∨ 𝑅 ) ∈ ( Base ‘ 𝐾 ) ) |
36 |
|
simp3r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑅 ∧ ¬ 𝑆 ≤ ( 𝑄 ∨ 𝑅 ) ) ) → ¬ 𝑆 ≤ ( 𝑄 ∨ 𝑅 ) ) |
37 |
23 2 1 3
|
hlexch1 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ∧ ( 𝑄 ∨ 𝑅 ) ∈ ( Base ‘ 𝐾 ) ) ∧ ¬ 𝑆 ≤ ( 𝑄 ∨ 𝑅 ) ) → ( 𝑆 ≤ ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑃 ) → 𝑃 ≤ ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑆 ) ) ) |
38 |
6 33 8 35 36 37
|
syl131anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑅 ∧ ¬ 𝑆 ≤ ( 𝑄 ∨ 𝑅 ) ) ) → ( 𝑆 ≤ ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑃 ) → 𝑃 ≤ ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑆 ) ) ) |
39 |
32 38
|
sylbird |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑅 ∧ ¬ 𝑆 ≤ ( 𝑄 ∨ 𝑅 ) ) ) → ( 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) → 𝑃 ≤ ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑆 ) ) ) |
40 |
39
|
3ad2ant1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑅 ∧ ¬ 𝑆 ≤ ( 𝑄 ∨ 𝑅 ) ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑃 ≤ ( 𝑄 ∨ 𝑅 ) ) ∧ ¬ 𝑃 ≤ ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑆 ) ) → ( 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) → 𝑃 ≤ ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑆 ) ) ) |
41 |
20 40
|
mtod |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑅 ∧ ¬ 𝑆 ≤ ( 𝑄 ∨ 𝑅 ) ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑃 ≤ ( 𝑄 ∨ 𝑅 ) ) ∧ ¬ 𝑃 ≤ ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑆 ) ) → ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) |
42 |
4 19 41
|
3jca |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑅 ∧ ¬ 𝑆 ≤ ( 𝑄 ∨ 𝑅 ) ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑃 ≤ ( 𝑄 ∨ 𝑅 ) ) ∧ ¬ 𝑃 ≤ ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑆 ) ) → ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ) |