| Step |
Hyp |
Ref |
Expression |
| 1 |
|
3dvdsdec.a |
⊢ 𝐴 ∈ ℕ0 |
| 2 |
|
3dvdsdec.b |
⊢ 𝐵 ∈ ℕ0 |
| 3 |
|
dfdec10 |
⊢ ; 𝐴 𝐵 = ( ( ; 1 0 · 𝐴 ) + 𝐵 ) |
| 4 |
|
9p1e10 |
⊢ ( 9 + 1 ) = ; 1 0 |
| 5 |
4
|
eqcomi |
⊢ ; 1 0 = ( 9 + 1 ) |
| 6 |
5
|
oveq1i |
⊢ ( ; 1 0 · 𝐴 ) = ( ( 9 + 1 ) · 𝐴 ) |
| 7 |
|
9cn |
⊢ 9 ∈ ℂ |
| 8 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 9 |
1
|
nn0cni |
⊢ 𝐴 ∈ ℂ |
| 10 |
7 8 9
|
adddiri |
⊢ ( ( 9 + 1 ) · 𝐴 ) = ( ( 9 · 𝐴 ) + ( 1 · 𝐴 ) ) |
| 11 |
9
|
mullidi |
⊢ ( 1 · 𝐴 ) = 𝐴 |
| 12 |
11
|
oveq2i |
⊢ ( ( 9 · 𝐴 ) + ( 1 · 𝐴 ) ) = ( ( 9 · 𝐴 ) + 𝐴 ) |
| 13 |
6 10 12
|
3eqtri |
⊢ ( ; 1 0 · 𝐴 ) = ( ( 9 · 𝐴 ) + 𝐴 ) |
| 14 |
13
|
oveq1i |
⊢ ( ( ; 1 0 · 𝐴 ) + 𝐵 ) = ( ( ( 9 · 𝐴 ) + 𝐴 ) + 𝐵 ) |
| 15 |
7 9
|
mulcli |
⊢ ( 9 · 𝐴 ) ∈ ℂ |
| 16 |
2
|
nn0cni |
⊢ 𝐵 ∈ ℂ |
| 17 |
15 9 16
|
addassi |
⊢ ( ( ( 9 · 𝐴 ) + 𝐴 ) + 𝐵 ) = ( ( 9 · 𝐴 ) + ( 𝐴 + 𝐵 ) ) |
| 18 |
3 14 17
|
3eqtri |
⊢ ; 𝐴 𝐵 = ( ( 9 · 𝐴 ) + ( 𝐴 + 𝐵 ) ) |
| 19 |
18
|
breq2i |
⊢ ( 3 ∥ ; 𝐴 𝐵 ↔ 3 ∥ ( ( 9 · 𝐴 ) + ( 𝐴 + 𝐵 ) ) ) |
| 20 |
|
3z |
⊢ 3 ∈ ℤ |
| 21 |
1
|
nn0zi |
⊢ 𝐴 ∈ ℤ |
| 22 |
2
|
nn0zi |
⊢ 𝐵 ∈ ℤ |
| 23 |
|
zaddcl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 + 𝐵 ) ∈ ℤ ) |
| 24 |
21 22 23
|
mp2an |
⊢ ( 𝐴 + 𝐵 ) ∈ ℤ |
| 25 |
|
9nn |
⊢ 9 ∈ ℕ |
| 26 |
25
|
nnzi |
⊢ 9 ∈ ℤ |
| 27 |
|
zmulcl |
⊢ ( ( 9 ∈ ℤ ∧ 𝐴 ∈ ℤ ) → ( 9 · 𝐴 ) ∈ ℤ ) |
| 28 |
26 21 27
|
mp2an |
⊢ ( 9 · 𝐴 ) ∈ ℤ |
| 29 |
|
zmulcl |
⊢ ( ( 3 ∈ ℤ ∧ 𝐴 ∈ ℤ ) → ( 3 · 𝐴 ) ∈ ℤ ) |
| 30 |
20 21 29
|
mp2an |
⊢ ( 3 · 𝐴 ) ∈ ℤ |
| 31 |
|
dvdsmul1 |
⊢ ( ( 3 ∈ ℤ ∧ ( 3 · 𝐴 ) ∈ ℤ ) → 3 ∥ ( 3 · ( 3 · 𝐴 ) ) ) |
| 32 |
20 30 31
|
mp2an |
⊢ 3 ∥ ( 3 · ( 3 · 𝐴 ) ) |
| 33 |
|
3t3e9 |
⊢ ( 3 · 3 ) = 9 |
| 34 |
33
|
eqcomi |
⊢ 9 = ( 3 · 3 ) |
| 35 |
34
|
oveq1i |
⊢ ( 9 · 𝐴 ) = ( ( 3 · 3 ) · 𝐴 ) |
| 36 |
|
3cn |
⊢ 3 ∈ ℂ |
| 37 |
36 36 9
|
mulassi |
⊢ ( ( 3 · 3 ) · 𝐴 ) = ( 3 · ( 3 · 𝐴 ) ) |
| 38 |
35 37
|
eqtri |
⊢ ( 9 · 𝐴 ) = ( 3 · ( 3 · 𝐴 ) ) |
| 39 |
32 38
|
breqtrri |
⊢ 3 ∥ ( 9 · 𝐴 ) |
| 40 |
28 39
|
pm3.2i |
⊢ ( ( 9 · 𝐴 ) ∈ ℤ ∧ 3 ∥ ( 9 · 𝐴 ) ) |
| 41 |
|
dvdsadd2b |
⊢ ( ( 3 ∈ ℤ ∧ ( 𝐴 + 𝐵 ) ∈ ℤ ∧ ( ( 9 · 𝐴 ) ∈ ℤ ∧ 3 ∥ ( 9 · 𝐴 ) ) ) → ( 3 ∥ ( 𝐴 + 𝐵 ) ↔ 3 ∥ ( ( 9 · 𝐴 ) + ( 𝐴 + 𝐵 ) ) ) ) |
| 42 |
20 24 40 41
|
mp3an |
⊢ ( 3 ∥ ( 𝐴 + 𝐵 ) ↔ 3 ∥ ( ( 9 · 𝐴 ) + ( 𝐴 + 𝐵 ) ) ) |
| 43 |
19 42
|
bitr4i |
⊢ ( 3 ∥ ; 𝐴 𝐵 ↔ 3 ∥ ( 𝐴 + 𝐵 ) ) |