Metamath Proof Explorer


Theorem 3ecoptocl

Description: Implicit substitution of classes for equivalence classes of ordered pairs. (Contributed by NM, 9-Aug-1995)

Ref Expression
Hypotheses 3ecoptocl.1 𝑆 = ( ( 𝐷 × 𝐷 ) / 𝑅 )
3ecoptocl.2 ( [ ⟨ 𝑥 , 𝑦 ⟩ ] 𝑅 = 𝐴 → ( 𝜑𝜓 ) )
3ecoptocl.3 ( [ ⟨ 𝑧 , 𝑤 ⟩ ] 𝑅 = 𝐵 → ( 𝜓𝜒 ) )
3ecoptocl.4 ( [ ⟨ 𝑣 , 𝑢 ⟩ ] 𝑅 = 𝐶 → ( 𝜒𝜃 ) )
3ecoptocl.5 ( ( ( 𝑥𝐷𝑦𝐷 ) ∧ ( 𝑧𝐷𝑤𝐷 ) ∧ ( 𝑣𝐷𝑢𝐷 ) ) → 𝜑 )
Assertion 3ecoptocl ( ( 𝐴𝑆𝐵𝑆𝐶𝑆 ) → 𝜃 )

Proof

Step Hyp Ref Expression
1 3ecoptocl.1 𝑆 = ( ( 𝐷 × 𝐷 ) / 𝑅 )
2 3ecoptocl.2 ( [ ⟨ 𝑥 , 𝑦 ⟩ ] 𝑅 = 𝐴 → ( 𝜑𝜓 ) )
3 3ecoptocl.3 ( [ ⟨ 𝑧 , 𝑤 ⟩ ] 𝑅 = 𝐵 → ( 𝜓𝜒 ) )
4 3ecoptocl.4 ( [ ⟨ 𝑣 , 𝑢 ⟩ ] 𝑅 = 𝐶 → ( 𝜒𝜃 ) )
5 3ecoptocl.5 ( ( ( 𝑥𝐷𝑦𝐷 ) ∧ ( 𝑧𝐷𝑤𝐷 ) ∧ ( 𝑣𝐷𝑢𝐷 ) ) → 𝜑 )
6 3 imbi2d ( [ ⟨ 𝑧 , 𝑤 ⟩ ] 𝑅 = 𝐵 → ( ( 𝐴𝑆𝜓 ) ↔ ( 𝐴𝑆𝜒 ) ) )
7 4 imbi2d ( [ ⟨ 𝑣 , 𝑢 ⟩ ] 𝑅 = 𝐶 → ( ( 𝐴𝑆𝜒 ) ↔ ( 𝐴𝑆𝜃 ) ) )
8 2 imbi2d ( [ ⟨ 𝑥 , 𝑦 ⟩ ] 𝑅 = 𝐴 → ( ( ( ( 𝑧𝐷𝑤𝐷 ) ∧ ( 𝑣𝐷𝑢𝐷 ) ) → 𝜑 ) ↔ ( ( ( 𝑧𝐷𝑤𝐷 ) ∧ ( 𝑣𝐷𝑢𝐷 ) ) → 𝜓 ) ) )
9 5 3expib ( ( 𝑥𝐷𝑦𝐷 ) → ( ( ( 𝑧𝐷𝑤𝐷 ) ∧ ( 𝑣𝐷𝑢𝐷 ) ) → 𝜑 ) )
10 1 8 9 ecoptocl ( 𝐴𝑆 → ( ( ( 𝑧𝐷𝑤𝐷 ) ∧ ( 𝑣𝐷𝑢𝐷 ) ) → 𝜓 ) )
11 10 com12 ( ( ( 𝑧𝐷𝑤𝐷 ) ∧ ( 𝑣𝐷𝑢𝐷 ) ) → ( 𝐴𝑆𝜓 ) )
12 1 6 7 11 2ecoptocl ( ( 𝐵𝑆𝐶𝑆 ) → ( 𝐴𝑆𝜃 ) )
13 12 com12 ( 𝐴𝑆 → ( ( 𝐵𝑆𝐶𝑆 ) → 𝜃 ) )
14 13 3impib ( ( 𝐴𝑆𝐵𝑆𝐶𝑆 ) → 𝜃 )