Step |
Hyp |
Ref |
Expression |
1 |
|
3ecoptocl.1 |
⊢ 𝑆 = ( ( 𝐷 × 𝐷 ) / 𝑅 ) |
2 |
|
3ecoptocl.2 |
⊢ ( [ 〈 𝑥 , 𝑦 〉 ] 𝑅 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) |
3 |
|
3ecoptocl.3 |
⊢ ( [ 〈 𝑧 , 𝑤 〉 ] 𝑅 = 𝐵 → ( 𝜓 ↔ 𝜒 ) ) |
4 |
|
3ecoptocl.4 |
⊢ ( [ 〈 𝑣 , 𝑢 〉 ] 𝑅 = 𝐶 → ( 𝜒 ↔ 𝜃 ) ) |
5 |
|
3ecoptocl.5 |
⊢ ( ( ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ∧ ( 𝑣 ∈ 𝐷 ∧ 𝑢 ∈ 𝐷 ) ) → 𝜑 ) |
6 |
3
|
imbi2d |
⊢ ( [ 〈 𝑧 , 𝑤 〉 ] 𝑅 = 𝐵 → ( ( 𝐴 ∈ 𝑆 → 𝜓 ) ↔ ( 𝐴 ∈ 𝑆 → 𝜒 ) ) ) |
7 |
4
|
imbi2d |
⊢ ( [ 〈 𝑣 , 𝑢 〉 ] 𝑅 = 𝐶 → ( ( 𝐴 ∈ 𝑆 → 𝜒 ) ↔ ( 𝐴 ∈ 𝑆 → 𝜃 ) ) ) |
8 |
2
|
imbi2d |
⊢ ( [ 〈 𝑥 , 𝑦 〉 ] 𝑅 = 𝐴 → ( ( ( ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ∧ ( 𝑣 ∈ 𝐷 ∧ 𝑢 ∈ 𝐷 ) ) → 𝜑 ) ↔ ( ( ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ∧ ( 𝑣 ∈ 𝐷 ∧ 𝑢 ∈ 𝐷 ) ) → 𝜓 ) ) ) |
9 |
5
|
3expib |
⊢ ( ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) → ( ( ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ∧ ( 𝑣 ∈ 𝐷 ∧ 𝑢 ∈ 𝐷 ) ) → 𝜑 ) ) |
10 |
1 8 9
|
ecoptocl |
⊢ ( 𝐴 ∈ 𝑆 → ( ( ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ∧ ( 𝑣 ∈ 𝐷 ∧ 𝑢 ∈ 𝐷 ) ) → 𝜓 ) ) |
11 |
10
|
com12 |
⊢ ( ( ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ∧ ( 𝑣 ∈ 𝐷 ∧ 𝑢 ∈ 𝐷 ) ) → ( 𝐴 ∈ 𝑆 → 𝜓 ) ) |
12 |
1 6 7 11
|
2ecoptocl |
⊢ ( ( 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) → ( 𝐴 ∈ 𝑆 → 𝜃 ) ) |
13 |
12
|
com12 |
⊢ ( 𝐴 ∈ 𝑆 → ( ( 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) → 𝜃 ) ) |
14 |
13
|
3impib |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) → 𝜃 ) |