Step |
Hyp |
Ref |
Expression |
1 |
|
elpri |
⊢ ( 𝑋 ∈ { 𝐴 , 𝐵 } → ( 𝑋 = 𝐴 ∨ 𝑋 = 𝐵 ) ) |
2 |
|
elpri |
⊢ ( 𝑌 ∈ { 𝐴 , 𝐵 } → ( 𝑌 = 𝐴 ∨ 𝑌 = 𝐵 ) ) |
3 |
|
elpri |
⊢ ( 𝑍 ∈ { 𝐴 , 𝐵 } → ( 𝑍 = 𝐴 ∨ 𝑍 = 𝐵 ) ) |
4 |
|
eqtr3 |
⊢ ( ( 𝑍 = 𝐴 ∧ 𝑋 = 𝐴 ) → 𝑍 = 𝑋 ) |
5 |
|
eqneqall |
⊢ ( 𝑍 = 𝑋 → ( 𝑍 ≠ 𝑋 → 𝑌 = 𝑍 ) ) |
6 |
4 5
|
syl |
⊢ ( ( 𝑍 = 𝐴 ∧ 𝑋 = 𝐴 ) → ( 𝑍 ≠ 𝑋 → 𝑌 = 𝑍 ) ) |
7 |
6
|
adantld |
⊢ ( ( 𝑍 = 𝐴 ∧ 𝑋 = 𝐴 ) → ( ( 𝑌 ≠ 𝑋 ∧ 𝑍 ≠ 𝑋 ) → 𝑌 = 𝑍 ) ) |
8 |
7
|
ex |
⊢ ( 𝑍 = 𝐴 → ( 𝑋 = 𝐴 → ( ( 𝑌 ≠ 𝑋 ∧ 𝑍 ≠ 𝑋 ) → 𝑌 = 𝑍 ) ) ) |
9 |
8
|
a1d |
⊢ ( 𝑍 = 𝐴 → ( ( 𝑌 = 𝐴 ∨ 𝑌 = 𝐵 ) → ( 𝑋 = 𝐴 → ( ( 𝑌 ≠ 𝑋 ∧ 𝑍 ≠ 𝑋 ) → 𝑌 = 𝑍 ) ) ) ) |
10 |
|
eqtr3 |
⊢ ( ( 𝑌 = 𝐴 ∧ 𝑋 = 𝐴 ) → 𝑌 = 𝑋 ) |
11 |
|
eqneqall |
⊢ ( 𝑌 = 𝑋 → ( 𝑌 ≠ 𝑋 → ( 𝑍 ≠ 𝑋 → 𝑌 = 𝑍 ) ) ) |
12 |
10 11
|
syl |
⊢ ( ( 𝑌 = 𝐴 ∧ 𝑋 = 𝐴 ) → ( 𝑌 ≠ 𝑋 → ( 𝑍 ≠ 𝑋 → 𝑌 = 𝑍 ) ) ) |
13 |
12
|
impd |
⊢ ( ( 𝑌 = 𝐴 ∧ 𝑋 = 𝐴 ) → ( ( 𝑌 ≠ 𝑋 ∧ 𝑍 ≠ 𝑋 ) → 𝑌 = 𝑍 ) ) |
14 |
13
|
ex |
⊢ ( 𝑌 = 𝐴 → ( 𝑋 = 𝐴 → ( ( 𝑌 ≠ 𝑋 ∧ 𝑍 ≠ 𝑋 ) → 𝑌 = 𝑍 ) ) ) |
15 |
14
|
a1d |
⊢ ( 𝑌 = 𝐴 → ( 𝑍 = 𝐵 → ( 𝑋 = 𝐴 → ( ( 𝑌 ≠ 𝑋 ∧ 𝑍 ≠ 𝑋 ) → 𝑌 = 𝑍 ) ) ) ) |
16 |
|
eqtr3 |
⊢ ( ( 𝑌 = 𝐵 ∧ 𝑍 = 𝐵 ) → 𝑌 = 𝑍 ) |
17 |
16
|
2a1d |
⊢ ( ( 𝑌 = 𝐵 ∧ 𝑍 = 𝐵 ) → ( 𝑋 = 𝐴 → ( ( 𝑌 ≠ 𝑋 ∧ 𝑍 ≠ 𝑋 ) → 𝑌 = 𝑍 ) ) ) |
18 |
17
|
ex |
⊢ ( 𝑌 = 𝐵 → ( 𝑍 = 𝐵 → ( 𝑋 = 𝐴 → ( ( 𝑌 ≠ 𝑋 ∧ 𝑍 ≠ 𝑋 ) → 𝑌 = 𝑍 ) ) ) ) |
19 |
15 18
|
jaoi |
⊢ ( ( 𝑌 = 𝐴 ∨ 𝑌 = 𝐵 ) → ( 𝑍 = 𝐵 → ( 𝑋 = 𝐴 → ( ( 𝑌 ≠ 𝑋 ∧ 𝑍 ≠ 𝑋 ) → 𝑌 = 𝑍 ) ) ) ) |
20 |
19
|
com12 |
⊢ ( 𝑍 = 𝐵 → ( ( 𝑌 = 𝐴 ∨ 𝑌 = 𝐵 ) → ( 𝑋 = 𝐴 → ( ( 𝑌 ≠ 𝑋 ∧ 𝑍 ≠ 𝑋 ) → 𝑌 = 𝑍 ) ) ) ) |
21 |
9 20
|
jaoi |
⊢ ( ( 𝑍 = 𝐴 ∨ 𝑍 = 𝐵 ) → ( ( 𝑌 = 𝐴 ∨ 𝑌 = 𝐵 ) → ( 𝑋 = 𝐴 → ( ( 𝑌 ≠ 𝑋 ∧ 𝑍 ≠ 𝑋 ) → 𝑌 = 𝑍 ) ) ) ) |
22 |
21
|
com13 |
⊢ ( 𝑋 = 𝐴 → ( ( 𝑌 = 𝐴 ∨ 𝑌 = 𝐵 ) → ( ( 𝑍 = 𝐴 ∨ 𝑍 = 𝐵 ) → ( ( 𝑌 ≠ 𝑋 ∧ 𝑍 ≠ 𝑋 ) → 𝑌 = 𝑍 ) ) ) ) |
23 |
|
eqtr3 |
⊢ ( ( 𝑌 = 𝐴 ∧ 𝑍 = 𝐴 ) → 𝑌 = 𝑍 ) |
24 |
23
|
2a1d |
⊢ ( ( 𝑌 = 𝐴 ∧ 𝑍 = 𝐴 ) → ( 𝑋 = 𝐵 → ( ( 𝑌 ≠ 𝑋 ∧ 𝑍 ≠ 𝑋 ) → 𝑌 = 𝑍 ) ) ) |
25 |
24
|
ex |
⊢ ( 𝑌 = 𝐴 → ( 𝑍 = 𝐴 → ( 𝑋 = 𝐵 → ( ( 𝑌 ≠ 𝑋 ∧ 𝑍 ≠ 𝑋 ) → 𝑌 = 𝑍 ) ) ) ) |
26 |
|
eqtr3 |
⊢ ( ( 𝑌 = 𝐵 ∧ 𝑋 = 𝐵 ) → 𝑌 = 𝑋 ) |
27 |
26 11
|
syl |
⊢ ( ( 𝑌 = 𝐵 ∧ 𝑋 = 𝐵 ) → ( 𝑌 ≠ 𝑋 → ( 𝑍 ≠ 𝑋 → 𝑌 = 𝑍 ) ) ) |
28 |
27
|
impd |
⊢ ( ( 𝑌 = 𝐵 ∧ 𝑋 = 𝐵 ) → ( ( 𝑌 ≠ 𝑋 ∧ 𝑍 ≠ 𝑋 ) → 𝑌 = 𝑍 ) ) |
29 |
28
|
ex |
⊢ ( 𝑌 = 𝐵 → ( 𝑋 = 𝐵 → ( ( 𝑌 ≠ 𝑋 ∧ 𝑍 ≠ 𝑋 ) → 𝑌 = 𝑍 ) ) ) |
30 |
29
|
a1d |
⊢ ( 𝑌 = 𝐵 → ( 𝑍 = 𝐴 → ( 𝑋 = 𝐵 → ( ( 𝑌 ≠ 𝑋 ∧ 𝑍 ≠ 𝑋 ) → 𝑌 = 𝑍 ) ) ) ) |
31 |
25 30
|
jaoi |
⊢ ( ( 𝑌 = 𝐴 ∨ 𝑌 = 𝐵 ) → ( 𝑍 = 𝐴 → ( 𝑋 = 𝐵 → ( ( 𝑌 ≠ 𝑋 ∧ 𝑍 ≠ 𝑋 ) → 𝑌 = 𝑍 ) ) ) ) |
32 |
31
|
com12 |
⊢ ( 𝑍 = 𝐴 → ( ( 𝑌 = 𝐴 ∨ 𝑌 = 𝐵 ) → ( 𝑋 = 𝐵 → ( ( 𝑌 ≠ 𝑋 ∧ 𝑍 ≠ 𝑋 ) → 𝑌 = 𝑍 ) ) ) ) |
33 |
|
eqtr3 |
⊢ ( ( 𝑍 = 𝐵 ∧ 𝑋 = 𝐵 ) → 𝑍 = 𝑋 ) |
34 |
33 5
|
syl |
⊢ ( ( 𝑍 = 𝐵 ∧ 𝑋 = 𝐵 ) → ( 𝑍 ≠ 𝑋 → 𝑌 = 𝑍 ) ) |
35 |
34
|
adantld |
⊢ ( ( 𝑍 = 𝐵 ∧ 𝑋 = 𝐵 ) → ( ( 𝑌 ≠ 𝑋 ∧ 𝑍 ≠ 𝑋 ) → 𝑌 = 𝑍 ) ) |
36 |
35
|
ex |
⊢ ( 𝑍 = 𝐵 → ( 𝑋 = 𝐵 → ( ( 𝑌 ≠ 𝑋 ∧ 𝑍 ≠ 𝑋 ) → 𝑌 = 𝑍 ) ) ) |
37 |
36
|
a1d |
⊢ ( 𝑍 = 𝐵 → ( ( 𝑌 = 𝐴 ∨ 𝑌 = 𝐵 ) → ( 𝑋 = 𝐵 → ( ( 𝑌 ≠ 𝑋 ∧ 𝑍 ≠ 𝑋 ) → 𝑌 = 𝑍 ) ) ) ) |
38 |
32 37
|
jaoi |
⊢ ( ( 𝑍 = 𝐴 ∨ 𝑍 = 𝐵 ) → ( ( 𝑌 = 𝐴 ∨ 𝑌 = 𝐵 ) → ( 𝑋 = 𝐵 → ( ( 𝑌 ≠ 𝑋 ∧ 𝑍 ≠ 𝑋 ) → 𝑌 = 𝑍 ) ) ) ) |
39 |
38
|
com13 |
⊢ ( 𝑋 = 𝐵 → ( ( 𝑌 = 𝐴 ∨ 𝑌 = 𝐵 ) → ( ( 𝑍 = 𝐴 ∨ 𝑍 = 𝐵 ) → ( ( 𝑌 ≠ 𝑋 ∧ 𝑍 ≠ 𝑋 ) → 𝑌 = 𝑍 ) ) ) ) |
40 |
22 39
|
jaoi |
⊢ ( ( 𝑋 = 𝐴 ∨ 𝑋 = 𝐵 ) → ( ( 𝑌 = 𝐴 ∨ 𝑌 = 𝐵 ) → ( ( 𝑍 = 𝐴 ∨ 𝑍 = 𝐵 ) → ( ( 𝑌 ≠ 𝑋 ∧ 𝑍 ≠ 𝑋 ) → 𝑌 = 𝑍 ) ) ) ) |
41 |
40
|
3imp |
⊢ ( ( ( 𝑋 = 𝐴 ∨ 𝑋 = 𝐵 ) ∧ ( 𝑌 = 𝐴 ∨ 𝑌 = 𝐵 ) ∧ ( 𝑍 = 𝐴 ∨ 𝑍 = 𝐵 ) ) → ( ( 𝑌 ≠ 𝑋 ∧ 𝑍 ≠ 𝑋 ) → 𝑌 = 𝑍 ) ) |
42 |
1 2 3 41
|
syl3an |
⊢ ( ( 𝑋 ∈ { 𝐴 , 𝐵 } ∧ 𝑌 ∈ { 𝐴 , 𝐵 } ∧ 𝑍 ∈ { 𝐴 , 𝐵 } ) → ( ( 𝑌 ≠ 𝑋 ∧ 𝑍 ≠ 𝑋 ) → 𝑌 = 𝑍 ) ) |
43 |
42
|
imp |
⊢ ( ( ( 𝑋 ∈ { 𝐴 , 𝐵 } ∧ 𝑌 ∈ { 𝐴 , 𝐵 } ∧ 𝑍 ∈ { 𝐴 , 𝐵 } ) ∧ ( 𝑌 ≠ 𝑋 ∧ 𝑍 ≠ 𝑋 ) ) → 𝑌 = 𝑍 ) |