Metamath Proof Explorer


Theorem 3eltr3d

Description: Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017)

Ref Expression
Hypotheses 3eltr3d.1 ( 𝜑𝐴𝐵 )
3eltr3d.2 ( 𝜑𝐴 = 𝐶 )
3eltr3d.3 ( 𝜑𝐵 = 𝐷 )
Assertion 3eltr3d ( 𝜑𝐶𝐷 )

Proof

Step Hyp Ref Expression
1 3eltr3d.1 ( 𝜑𝐴𝐵 )
2 3eltr3d.2 ( 𝜑𝐴 = 𝐶 )
3 3eltr3d.3 ( 𝜑𝐵 = 𝐷 )
4 1 3 eleqtrd ( 𝜑𝐴𝐷 )
5 2 4 eqeltrrd ( 𝜑𝐶𝐷 )