Metamath Proof Explorer


Theorem 3eltr3g

Description: Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017) (Proof shortened by Wolf Lammen, 23-Nov-2019)

Ref Expression
Hypotheses 3eltr3g.1 ( 𝜑𝐴𝐵 )
3eltr3g.2 𝐴 = 𝐶
3eltr3g.3 𝐵 = 𝐷
Assertion 3eltr3g ( 𝜑𝐶𝐷 )

Proof

Step Hyp Ref Expression
1 3eltr3g.1 ( 𝜑𝐴𝐵 )
2 3eltr3g.2 𝐴 = 𝐶
3 3eltr3g.3 𝐵 = 𝐷
4 2 1 eqeltrrid ( 𝜑𝐶𝐵 )
5 4 3 eleqtrdi ( 𝜑𝐶𝐷 )