Metamath Proof Explorer
		
		
		
		Description:  Substitution of equal classes into membership relation.  (Contributed by Mario Carneiro, 6-Jan-2017)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | 3eltr3i.1 | ⊢ 𝐴  ∈  𝐵 | 
					
						|  |  | 3eltr3i.2 | ⊢ 𝐴  =  𝐶 | 
					
						|  |  | 3eltr3i.3 | ⊢ 𝐵  =  𝐷 | 
				
					|  | Assertion | 3eltr3i | ⊢  𝐶  ∈  𝐷 | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 3eltr3i.1 | ⊢ 𝐴  ∈  𝐵 | 
						
							| 2 |  | 3eltr3i.2 | ⊢ 𝐴  =  𝐶 | 
						
							| 3 |  | 3eltr3i.3 | ⊢ 𝐵  =  𝐷 | 
						
							| 4 | 1 3 | eleqtri | ⊢ 𝐴  ∈  𝐷 | 
						
							| 5 | 2 4 | eqeltrri | ⊢ 𝐶  ∈  𝐷 |