Metamath Proof Explorer


Theorem 3eltr3i

Description: Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017)

Ref Expression
Hypotheses 3eltr3i.1 𝐴𝐵
3eltr3i.2 𝐴 = 𝐶
3eltr3i.3 𝐵 = 𝐷
Assertion 3eltr3i 𝐶𝐷

Proof

Step Hyp Ref Expression
1 3eltr3i.1 𝐴𝐵
2 3eltr3i.2 𝐴 = 𝐶
3 3eltr3i.3 𝐵 = 𝐷
4 1 3 eleqtri 𝐴𝐷
5 2 4 eqeltrri 𝐶𝐷