Metamath Proof Explorer


Theorem 3eltr4g

Description: Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017) (Proof shortened by Wolf Lammen, 23-Nov-2019)

Ref Expression
Hypotheses 3eltr4g.1 ( 𝜑𝐴𝐵 )
3eltr4g.2 𝐶 = 𝐴
3eltr4g.3 𝐷 = 𝐵
Assertion 3eltr4g ( 𝜑𝐶𝐷 )

Proof

Step Hyp Ref Expression
1 3eltr4g.1 ( 𝜑𝐴𝐵 )
2 3eltr4g.2 𝐶 = 𝐴
3 3eltr4g.3 𝐷 = 𝐵
4 2 1 eqeltrid ( 𝜑𝐶𝐵 )
5 4 3 eleqtrrdi ( 𝜑𝐶𝐷 )