Metamath Proof Explorer
Description: Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017)
|
|
Ref |
Expression |
|
Hypotheses |
3eltr4i.1 |
⊢ 𝐴 ∈ 𝐵 |
|
|
3eltr4i.2 |
⊢ 𝐶 = 𝐴 |
|
|
3eltr4i.3 |
⊢ 𝐷 = 𝐵 |
|
Assertion |
3eltr4i |
⊢ 𝐶 ∈ 𝐷 |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
3eltr4i.1 |
⊢ 𝐴 ∈ 𝐵 |
2 |
|
3eltr4i.2 |
⊢ 𝐶 = 𝐴 |
3 |
|
3eltr4i.3 |
⊢ 𝐷 = 𝐵 |
4 |
1 3
|
eleqtrri |
⊢ 𝐴 ∈ 𝐷 |
5 |
2 4
|
eqeltri |
⊢ 𝐶 ∈ 𝐷 |