Metamath Proof Explorer


Theorem 3eltr4i

Description: Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017)

Ref Expression
Hypotheses 3eltr4i.1 𝐴𝐵
3eltr4i.2 𝐶 = 𝐴
3eltr4i.3 𝐷 = 𝐵
Assertion 3eltr4i 𝐶𝐷

Proof

Step Hyp Ref Expression
1 3eltr4i.1 𝐴𝐵
2 3eltr4i.2 𝐶 = 𝐴
3 3eltr4i.3 𝐷 = 𝐵
4 1 3 eleqtrri 𝐴𝐷
5 2 4 eqeltri 𝐶𝐷