Metamath Proof Explorer


Theorem 3exbidv

Description: Formula-building rule for three existential quantifiers (deduction form). (Contributed by NM, 1-May-1995)

Ref Expression
Hypothesis 3exbidv.1 ( 𝜑 → ( 𝜓𝜒 ) )
Assertion 3exbidv ( 𝜑 → ( ∃ 𝑥𝑦𝑧 𝜓 ↔ ∃ 𝑥𝑦𝑧 𝜒 ) )

Proof

Step Hyp Ref Expression
1 3exbidv.1 ( 𝜑 → ( 𝜓𝜒 ) )
2 1 exbidv ( 𝜑 → ( ∃ 𝑧 𝜓 ↔ ∃ 𝑧 𝜒 ) )
3 2 2exbidv ( 𝜑 → ( ∃ 𝑥𝑦𝑧 𝜓 ↔ ∃ 𝑥𝑦𝑧 𝜒 ) )