Metamath Proof Explorer


Theorem 3exbii

Description: Inference adding three existential quantifiers to both sides of an equivalence. (Contributed by NM, 2-May-1995)

Ref Expression
Hypothesis 3exbii.1 ( 𝜑𝜓 )
Assertion 3exbii ( ∃ 𝑥𝑦𝑧 𝜑 ↔ ∃ 𝑥𝑦𝑧 𝜓 )

Proof

Step Hyp Ref Expression
1 3exbii.1 ( 𝜑𝜓 )
2 1 exbii ( ∃ 𝑧 𝜑 ↔ ∃ 𝑧 𝜓 )
3 2 2exbii ( ∃ 𝑥𝑦𝑧 𝜑 ↔ ∃ 𝑥𝑦𝑧 𝜓 )