Metamath Proof Explorer
Description: Inference adding three existential quantifiers to both sides of an
equivalence. (Contributed by NM, 2-May-1995)
|
|
Ref |
Expression |
|
Hypothesis |
3exbii.1 |
⊢ ( 𝜑 ↔ 𝜓 ) |
|
Assertion |
3exbii |
⊢ ( ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 𝜑 ↔ ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 𝜓 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
3exbii.1 |
⊢ ( 𝜑 ↔ 𝜓 ) |
2 |
1
|
exbii |
⊢ ( ∃ 𝑧 𝜑 ↔ ∃ 𝑧 𝜓 ) |
3 |
2
|
2exbii |
⊢ ( ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 𝜑 ↔ ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 𝜓 ) |