Metamath Proof Explorer


Theorem 3exdistr

Description: Distribution of existential quantifiers in a triple conjunction. (Contributed by NM, 9-Mar-1995) (Proof shortened by Andrew Salmon, 25-May-2011)

Ref Expression
Assertion 3exdistr ( ∃ 𝑥𝑦𝑧 ( 𝜑𝜓𝜒 ) ↔ ∃ 𝑥 ( 𝜑 ∧ ∃ 𝑦 ( 𝜓 ∧ ∃ 𝑧 𝜒 ) ) )

Proof

Step Hyp Ref Expression
1 3anass ( ( 𝜑𝜓𝜒 ) ↔ ( 𝜑 ∧ ( 𝜓𝜒 ) ) )
2 1 2exbii ( ∃ 𝑦𝑧 ( 𝜑𝜓𝜒 ) ↔ ∃ 𝑦𝑧 ( 𝜑 ∧ ( 𝜓𝜒 ) ) )
3 19.42vv ( ∃ 𝑦𝑧 ( 𝜑 ∧ ( 𝜓𝜒 ) ) ↔ ( 𝜑 ∧ ∃ 𝑦𝑧 ( 𝜓𝜒 ) ) )
4 exdistr ( ∃ 𝑦𝑧 ( 𝜓𝜒 ) ↔ ∃ 𝑦 ( 𝜓 ∧ ∃ 𝑧 𝜒 ) )
5 4 anbi2i ( ( 𝜑 ∧ ∃ 𝑦𝑧 ( 𝜓𝜒 ) ) ↔ ( 𝜑 ∧ ∃ 𝑦 ( 𝜓 ∧ ∃ 𝑧 𝜒 ) ) )
6 2 3 5 3bitri ( ∃ 𝑦𝑧 ( 𝜑𝜓𝜒 ) ↔ ( 𝜑 ∧ ∃ 𝑦 ( 𝜓 ∧ ∃ 𝑧 𝜒 ) ) )
7 6 exbii ( ∃ 𝑥𝑦𝑧 ( 𝜑𝜓𝜒 ) ↔ ∃ 𝑥 ( 𝜑 ∧ ∃ 𝑦 ( 𝜓 ∧ ∃ 𝑧 𝜒 ) ) )