Metamath Proof Explorer


Theorem 3exp1

Description: Exportation from left triple conjunction. (Contributed by NM, 24-Feb-2005)

Ref Expression
Hypothesis 3exp1.1 ( ( ( 𝜑𝜓𝜒 ) ∧ 𝜃 ) → 𝜏 )
Assertion 3exp1 ( 𝜑 → ( 𝜓 → ( 𝜒 → ( 𝜃𝜏 ) ) ) )

Proof

Step Hyp Ref Expression
1 3exp1.1 ( ( ( 𝜑𝜓𝜒 ) ∧ 𝜃 ) → 𝜏 )
2 1 ex ( ( 𝜑𝜓𝜒 ) → ( 𝜃𝜏 ) )
3 2 3exp ( 𝜑 → ( 𝜓 → ( 𝜒 → ( 𝜃𝜏 ) ) ) )