Step |
Hyp |
Ref |
Expression |
1 |
|
3gencl.1 |
⊢ ( 𝐷 ∈ 𝑆 ↔ ∃ 𝑥 ∈ 𝑅 𝐴 = 𝐷 ) |
2 |
|
3gencl.2 |
⊢ ( 𝐹 ∈ 𝑆 ↔ ∃ 𝑦 ∈ 𝑅 𝐵 = 𝐹 ) |
3 |
|
3gencl.3 |
⊢ ( 𝐺 ∈ 𝑆 ↔ ∃ 𝑧 ∈ 𝑅 𝐶 = 𝐺 ) |
4 |
|
3gencl.4 |
⊢ ( 𝐴 = 𝐷 → ( 𝜑 ↔ 𝜓 ) ) |
5 |
|
3gencl.5 |
⊢ ( 𝐵 = 𝐹 → ( 𝜓 ↔ 𝜒 ) ) |
6 |
|
3gencl.6 |
⊢ ( 𝐶 = 𝐺 → ( 𝜒 ↔ 𝜃 ) ) |
7 |
|
3gencl.7 |
⊢ ( ( 𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) → 𝜑 ) |
8 |
|
df-rex |
⊢ ( ∃ 𝑧 ∈ 𝑅 𝐶 = 𝐺 ↔ ∃ 𝑧 ( 𝑧 ∈ 𝑅 ∧ 𝐶 = 𝐺 ) ) |
9 |
3 8
|
bitri |
⊢ ( 𝐺 ∈ 𝑆 ↔ ∃ 𝑧 ( 𝑧 ∈ 𝑅 ∧ 𝐶 = 𝐺 ) ) |
10 |
6
|
imbi2d |
⊢ ( 𝐶 = 𝐺 → ( ( ( 𝐷 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆 ) → 𝜒 ) ↔ ( ( 𝐷 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆 ) → 𝜃 ) ) ) |
11 |
4
|
imbi2d |
⊢ ( 𝐴 = 𝐷 → ( ( 𝑧 ∈ 𝑅 → 𝜑 ) ↔ ( 𝑧 ∈ 𝑅 → 𝜓 ) ) ) |
12 |
5
|
imbi2d |
⊢ ( 𝐵 = 𝐹 → ( ( 𝑧 ∈ 𝑅 → 𝜓 ) ↔ ( 𝑧 ∈ 𝑅 → 𝜒 ) ) ) |
13 |
7
|
3expia |
⊢ ( ( 𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ) → ( 𝑧 ∈ 𝑅 → 𝜑 ) ) |
14 |
1 2 11 12 13
|
2gencl |
⊢ ( ( 𝐷 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆 ) → ( 𝑧 ∈ 𝑅 → 𝜒 ) ) |
15 |
14
|
com12 |
⊢ ( 𝑧 ∈ 𝑅 → ( ( 𝐷 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆 ) → 𝜒 ) ) |
16 |
9 10 15
|
gencl |
⊢ ( 𝐺 ∈ 𝑆 → ( ( 𝐷 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆 ) → 𝜃 ) ) |
17 |
16
|
com12 |
⊢ ( ( 𝐷 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆 ) → ( 𝐺 ∈ 𝑆 → 𝜃 ) ) |
18 |
17
|
3impia |
⊢ ( ( 𝐷 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ) → 𝜃 ) |