| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1z |
⊢ 1 ∈ ℤ |
| 2 |
|
2cn |
⊢ 2 ∈ ℂ |
| 3 |
2
|
mullidi |
⊢ ( 1 · 2 ) = 2 |
| 4 |
|
2lt3 |
⊢ 2 < 3 |
| 5 |
3 4
|
eqbrtri |
⊢ ( 1 · 2 ) < 3 |
| 6 |
|
1re |
⊢ 1 ∈ ℝ |
| 7 |
|
3re |
⊢ 3 ∈ ℝ |
| 8 |
|
2re |
⊢ 2 ∈ ℝ |
| 9 |
|
2pos |
⊢ 0 < 2 |
| 10 |
8 9
|
pm3.2i |
⊢ ( 2 ∈ ℝ ∧ 0 < 2 ) |
| 11 |
|
ltmuldiv |
⊢ ( ( 1 ∈ ℝ ∧ 3 ∈ ℝ ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) → ( ( 1 · 2 ) < 3 ↔ 1 < ( 3 / 2 ) ) ) |
| 12 |
6 7 10 11
|
mp3an |
⊢ ( ( 1 · 2 ) < 3 ↔ 1 < ( 3 / 2 ) ) |
| 13 |
5 12
|
mpbi |
⊢ 1 < ( 3 / 2 ) |
| 14 |
|
3lt4 |
⊢ 3 < 4 |
| 15 |
|
2t2e4 |
⊢ ( 2 · 2 ) = 4 |
| 16 |
15
|
breq2i |
⊢ ( 3 < ( 2 · 2 ) ↔ 3 < 4 ) |
| 17 |
14 16
|
mpbir |
⊢ 3 < ( 2 · 2 ) |
| 18 |
|
1p1e2 |
⊢ ( 1 + 1 ) = 2 |
| 19 |
18
|
breq2i |
⊢ ( ( 3 / 2 ) < ( 1 + 1 ) ↔ ( 3 / 2 ) < 2 ) |
| 20 |
|
ltdivmul |
⊢ ( ( 3 ∈ ℝ ∧ 2 ∈ ℝ ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) → ( ( 3 / 2 ) < 2 ↔ 3 < ( 2 · 2 ) ) ) |
| 21 |
7 8 10 20
|
mp3an |
⊢ ( ( 3 / 2 ) < 2 ↔ 3 < ( 2 · 2 ) ) |
| 22 |
19 21
|
bitri |
⊢ ( ( 3 / 2 ) < ( 1 + 1 ) ↔ 3 < ( 2 · 2 ) ) |
| 23 |
17 22
|
mpbir |
⊢ ( 3 / 2 ) < ( 1 + 1 ) |
| 24 |
|
btwnnz |
⊢ ( ( 1 ∈ ℤ ∧ 1 < ( 3 / 2 ) ∧ ( 3 / 2 ) < ( 1 + 1 ) ) → ¬ ( 3 / 2 ) ∈ ℤ ) |
| 25 |
1 13 23 24
|
mp3an |
⊢ ¬ ( 3 / 2 ) ∈ ℤ |