Metamath Proof Explorer


Theorem 3ianor

Description: Negated triple conjunction expressed in terms of triple disjunction. (Contributed by Jeff Hankins, 15-Aug-2009) (Proof shortened by Andrew Salmon, 13-May-2011) (Revised by Wolf Lammen, 8-Apr-2022)

Ref Expression
Assertion 3ianor ( ¬ ( 𝜑𝜓𝜒 ) ↔ ( ¬ 𝜑 ∨ ¬ 𝜓 ∨ ¬ 𝜒 ) )

Proof

Step Hyp Ref Expression
1 ianor ( ¬ ( 𝜑𝜓 ) ↔ ( ¬ 𝜑 ∨ ¬ 𝜓 ) )
2 1 orbi1i ( ( ¬ ( 𝜑𝜓 ) ∨ ¬ 𝜒 ) ↔ ( ( ¬ 𝜑 ∨ ¬ 𝜓 ) ∨ ¬ 𝜒 ) )
3 ianor ( ¬ ( ( 𝜑𝜓 ) ∧ 𝜒 ) ↔ ( ¬ ( 𝜑𝜓 ) ∨ ¬ 𝜒 ) )
4 df-3an ( ( 𝜑𝜓𝜒 ) ↔ ( ( 𝜑𝜓 ) ∧ 𝜒 ) )
5 3 4 xchnxbir ( ¬ ( 𝜑𝜓𝜒 ) ↔ ( ¬ ( 𝜑𝜓 ) ∨ ¬ 𝜒 ) )
6 df-3or ( ( ¬ 𝜑 ∨ ¬ 𝜓 ∨ ¬ 𝜒 ) ↔ ( ( ¬ 𝜑 ∨ ¬ 𝜓 ) ∨ ¬ 𝜒 ) )
7 2 5 6 3bitr4i ( ¬ ( 𝜑𝜓𝜒 ) ↔ ( ¬ 𝜑 ∨ ¬ 𝜓 ∨ ¬ 𝜒 ) )