Metamath Proof Explorer


Theorem 3imp231

Description: Importation inference. (Contributed by Alan Sare, 17-Oct-2017)

Ref Expression
Hypothesis 3imp.1 ( 𝜑 → ( 𝜓 → ( 𝜒𝜃 ) ) )
Assertion 3imp231 ( ( 𝜓𝜒𝜑 ) → 𝜃 )

Proof

Step Hyp Ref Expression
1 3imp.1 ( 𝜑 → ( 𝜓 → ( 𝜒𝜃 ) ) )
2 1 com3l ( 𝜓 → ( 𝜒 → ( 𝜑𝜃 ) ) )
3 2 3imp ( ( 𝜓𝜒𝜑 ) → 𝜃 )