Description: A 1-hypothesis propositional calculus deduction. (Contributed by Alan Sare, 25-Sep-2017)
Ref | Expression | ||
---|---|---|---|
Hypothesis | 3impcombi.1 | ⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜑 ) → ( 𝜒 ↔ 𝜃 ) ) | |
Assertion | 3impcombi | ⊢ ( ( 𝜓 ∧ 𝜑 ∧ 𝜒 ) → 𝜃 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3impcombi.1 | ⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜑 ) → ( 𝜒 ↔ 𝜃 ) ) | |
2 | 1 | biimpd | ⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜑 ) → ( 𝜒 → 𝜃 ) ) |
3 | 2 | 3anidm13 | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝜒 → 𝜃 ) ) |
4 | 3 | ancoms | ⊢ ( ( 𝜓 ∧ 𝜑 ) → ( 𝜒 → 𝜃 ) ) |
5 | 4 | 3impia | ⊢ ( ( 𝜓 ∧ 𝜑 ∧ 𝜒 ) → 𝜃 ) |