Metamath Proof Explorer


Theorem 3impdi

Description: Importation inference (undistribute conjunction). (Contributed by NM, 14-Aug-1995)

Ref Expression
Hypothesis 3impdi.1 ( ( ( 𝜑𝜓 ) ∧ ( 𝜑𝜒 ) ) → 𝜃 )
Assertion 3impdi ( ( 𝜑𝜓𝜒 ) → 𝜃 )

Proof

Step Hyp Ref Expression
1 3impdi.1 ( ( ( 𝜑𝜓 ) ∧ ( 𝜑𝜒 ) ) → 𝜃 )
2 1 anandis ( ( 𝜑 ∧ ( 𝜓𝜒 ) ) → 𝜃 )
3 2 3impb ( ( 𝜑𝜓𝜒 ) → 𝜃 )