Metamath Proof Explorer


Theorem 3impdir

Description: Importation inference (undistribute conjunction). (Contributed by NM, 20-Aug-1995)

Ref Expression
Hypothesis 3impdir.1 ( ( ( 𝜑𝜓 ) ∧ ( 𝜒𝜓 ) ) → 𝜃 )
Assertion 3impdir ( ( 𝜑𝜒𝜓 ) → 𝜃 )

Proof

Step Hyp Ref Expression
1 3impdir.1 ( ( ( 𝜑𝜓 ) ∧ ( 𝜒𝜓 ) ) → 𝜃 )
2 1 anandirs ( ( ( 𝜑𝜒 ) ∧ 𝜓 ) → 𝜃 )
3 2 3impa ( ( 𝜑𝜒𝜓 ) → 𝜃 )