Metamath Proof Explorer


Theorem 3impexp

Description: Version of impexp for a triple conjunction. (Contributed by Alan Sare, 31-Dec-2011)

Ref Expression
Assertion 3impexp ( ( ( 𝜑𝜓𝜒 ) → 𝜃 ) ↔ ( 𝜑 → ( 𝜓 → ( 𝜒𝜃 ) ) ) )

Proof

Step Hyp Ref Expression
1 id ( ( ( 𝜑𝜓𝜒 ) → 𝜃 ) → ( ( 𝜑𝜓𝜒 ) → 𝜃 ) )
2 1 3expd ( ( ( 𝜑𝜓𝜒 ) → 𝜃 ) → ( 𝜑 → ( 𝜓 → ( 𝜒𝜃 ) ) ) )
3 id ( ( 𝜑 → ( 𝜓 → ( 𝜒𝜃 ) ) ) → ( 𝜑 → ( 𝜓 → ( 𝜒𝜃 ) ) ) )
4 3 3impd ( ( 𝜑 → ( 𝜓 → ( 𝜒𝜃 ) ) ) → ( ( 𝜑𝜓𝜒 ) → 𝜃 ) )
5 2 4 impbii ( ( ( 𝜑𝜓𝜒 ) → 𝜃 ) ↔ ( 𝜑 → ( 𝜓 → ( 𝜒𝜃 ) ) ) )