Description: Version of impexp for a triple conjunction. (Contributed by Alan Sare, 31-Dec-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | 3impexp | ⊢ ( ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → 𝜃 ) ↔ ( 𝜑 → ( 𝜓 → ( 𝜒 → 𝜃 ) ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id | ⊢ ( ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → 𝜃 ) → ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → 𝜃 ) ) | |
2 | 1 | 3expd | ⊢ ( ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → 𝜃 ) → ( 𝜑 → ( 𝜓 → ( 𝜒 → 𝜃 ) ) ) ) |
3 | id | ⊢ ( ( 𝜑 → ( 𝜓 → ( 𝜒 → 𝜃 ) ) ) → ( 𝜑 → ( 𝜓 → ( 𝜒 → 𝜃 ) ) ) ) | |
4 | 3 | 3impd | ⊢ ( ( 𝜑 → ( 𝜓 → ( 𝜒 → 𝜃 ) ) ) → ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → 𝜃 ) ) |
5 | 2 4 | impbii | ⊢ ( ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → 𝜃 ) ↔ ( 𝜑 → ( 𝜓 → ( 𝜒 → 𝜃 ) ) ) ) |