Description: Version of impexp for a triple conjunction. (Contributed by Alan Sare, 31-Dec-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 3impexp | ⊢ ( ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → 𝜃 ) ↔ ( 𝜑 → ( 𝜓 → ( 𝜒 → 𝜃 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id | ⊢ ( ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → 𝜃 ) → ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → 𝜃 ) ) | |
| 2 | 1 | 3expd | ⊢ ( ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → 𝜃 ) → ( 𝜑 → ( 𝜓 → ( 𝜒 → 𝜃 ) ) ) ) |
| 3 | id | ⊢ ( ( 𝜑 → ( 𝜓 → ( 𝜒 → 𝜃 ) ) ) → ( 𝜑 → ( 𝜓 → ( 𝜒 → 𝜃 ) ) ) ) | |
| 4 | 3 | 3impd | ⊢ ( ( 𝜑 → ( 𝜓 → ( 𝜒 → 𝜃 ) ) ) → ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → 𝜃 ) ) |
| 5 | 2 4 | impbii | ⊢ ( ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → 𝜃 ) ↔ ( 𝜑 → ( 𝜓 → ( 𝜒 → 𝜃 ) ) ) ) |