| Step |
Hyp |
Ref |
Expression |
| 1 |
|
idn1 |
⊢ ( ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → 𝜃 ) ▶ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → 𝜃 ) ) |
| 2 |
|
df-3an |
⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ↔ ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) ) |
| 3 |
|
imbi1 |
⊢ ( ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ↔ ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) ) → ( ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → 𝜃 ) ↔ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) → 𝜃 ) ) ) |
| 4 |
3
|
biimpcd |
⊢ ( ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → 𝜃 ) → ( ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ↔ ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) ) → ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) → 𝜃 ) ) ) |
| 5 |
1 2 4
|
e10 |
⊢ ( ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → 𝜃 ) ▶ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) → 𝜃 ) ) |
| 6 |
|
pm3.3 |
⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) → 𝜃 ) → ( ( 𝜑 ∧ 𝜓 ) → ( 𝜒 → 𝜃 ) ) ) |
| 7 |
5 6
|
e1a |
⊢ ( ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → 𝜃 ) ▶ ( ( 𝜑 ∧ 𝜓 ) → ( 𝜒 → 𝜃 ) ) ) |
| 8 |
|
pm3.3 |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) → ( 𝜒 → 𝜃 ) ) → ( 𝜑 → ( 𝜓 → ( 𝜒 → 𝜃 ) ) ) ) |
| 9 |
7 8
|
e1a |
⊢ ( ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → 𝜃 ) ▶ ( 𝜑 → ( 𝜓 → ( 𝜒 → 𝜃 ) ) ) ) |
| 10 |
9
|
in1 |
⊢ ( ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → 𝜃 ) → ( 𝜑 → ( 𝜓 → ( 𝜒 → 𝜃 ) ) ) ) |
| 11 |
|
idn1 |
⊢ ( ( 𝜑 → ( 𝜓 → ( 𝜒 → 𝜃 ) ) ) ▶ ( 𝜑 → ( 𝜓 → ( 𝜒 → 𝜃 ) ) ) ) |
| 12 |
|
pm3.31 |
⊢ ( ( 𝜑 → ( 𝜓 → ( 𝜒 → 𝜃 ) ) ) → ( ( 𝜑 ∧ 𝜓 ) → ( 𝜒 → 𝜃 ) ) ) |
| 13 |
11 12
|
e1a |
⊢ ( ( 𝜑 → ( 𝜓 → ( 𝜒 → 𝜃 ) ) ) ▶ ( ( 𝜑 ∧ 𝜓 ) → ( 𝜒 → 𝜃 ) ) ) |
| 14 |
|
pm3.31 |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) → ( 𝜒 → 𝜃 ) ) → ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) → 𝜃 ) ) |
| 15 |
13 14
|
e1a |
⊢ ( ( 𝜑 → ( 𝜓 → ( 𝜒 → 𝜃 ) ) ) ▶ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) → 𝜃 ) ) |
| 16 |
3
|
biimprd |
⊢ ( ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ↔ ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) ) → ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) → 𝜃 ) → ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → 𝜃 ) ) ) |
| 17 |
2 15 16
|
e01 |
⊢ ( ( 𝜑 → ( 𝜓 → ( 𝜒 → 𝜃 ) ) ) ▶ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → 𝜃 ) ) |
| 18 |
17
|
in1 |
⊢ ( ( 𝜑 → ( 𝜓 → ( 𝜒 → 𝜃 ) ) ) → ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → 𝜃 ) ) |
| 19 |
|
impbi |
⊢ ( ( ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → 𝜃 ) → ( 𝜑 → ( 𝜓 → ( 𝜒 → 𝜃 ) ) ) ) → ( ( ( 𝜑 → ( 𝜓 → ( 𝜒 → 𝜃 ) ) ) → ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → 𝜃 ) ) → ( ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → 𝜃 ) ↔ ( 𝜑 → ( 𝜓 → ( 𝜒 → 𝜃 ) ) ) ) ) ) |
| 20 |
10 18 19
|
e00 |
⊢ ( ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → 𝜃 ) ↔ ( 𝜑 → ( 𝜓 → ( 𝜒 → 𝜃 ) ) ) ) |