Metamath Proof Explorer


Theorem 3impexpbicom

Description: Version of 3impexp where in addition the consequent is commuted. (Contributed by Alan Sare, 31-Dec-2011)

Ref Expression
Assertion 3impexpbicom ( ( ( 𝜑𝜓𝜒 ) → ( 𝜃𝜏 ) ) ↔ ( 𝜑 → ( 𝜓 → ( 𝜒 → ( 𝜏𝜃 ) ) ) ) )

Proof

Step Hyp Ref Expression
1 bicom ( ( 𝜃𝜏 ) ↔ ( 𝜏𝜃 ) )
2 imbi2 ( ( ( 𝜃𝜏 ) ↔ ( 𝜏𝜃 ) ) → ( ( ( 𝜑𝜓𝜒 ) → ( 𝜃𝜏 ) ) ↔ ( ( 𝜑𝜓𝜒 ) → ( 𝜏𝜃 ) ) ) )
3 2 biimpcd ( ( ( 𝜑𝜓𝜒 ) → ( 𝜃𝜏 ) ) → ( ( ( 𝜃𝜏 ) ↔ ( 𝜏𝜃 ) ) → ( ( 𝜑𝜓𝜒 ) → ( 𝜏𝜃 ) ) ) )
4 1 3 mpi ( ( ( 𝜑𝜓𝜒 ) → ( 𝜃𝜏 ) ) → ( ( 𝜑𝜓𝜒 ) → ( 𝜏𝜃 ) ) )
5 4 3expd ( ( ( 𝜑𝜓𝜒 ) → ( 𝜃𝜏 ) ) → ( 𝜑 → ( 𝜓 → ( 𝜒 → ( 𝜏𝜃 ) ) ) ) )
6 3impexp ( ( ( 𝜑𝜓𝜒 ) → ( 𝜏𝜃 ) ) ↔ ( 𝜑 → ( 𝜓 → ( 𝜒 → ( 𝜏𝜃 ) ) ) ) )
7 6 biimpri ( ( 𝜑 → ( 𝜓 → ( 𝜒 → ( 𝜏𝜃 ) ) ) ) → ( ( 𝜑𝜓𝜒 ) → ( 𝜏𝜃 ) ) )
8 7 1 syl6ibr ( ( 𝜑 → ( 𝜓 → ( 𝜒 → ( 𝜏𝜃 ) ) ) ) → ( ( 𝜑𝜓𝜒 ) → ( 𝜃𝜏 ) ) )
9 5 8 impbii ( ( ( 𝜑𝜓𝜒 ) → ( 𝜃𝜏 ) ) ↔ ( 𝜑 → ( 𝜓 → ( 𝜒 → ( 𝜏𝜃 ) ) ) ) )