| Step |
Hyp |
Ref |
Expression |
| 1 |
|
idn1 |
⊢ ( ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → ( 𝜃 ↔ 𝜏 ) ) ▶ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → ( 𝜃 ↔ 𝜏 ) ) ) |
| 2 |
|
bicom |
⊢ ( ( 𝜃 ↔ 𝜏 ) ↔ ( 𝜏 ↔ 𝜃 ) ) |
| 3 |
|
imbi2 |
⊢ ( ( ( 𝜃 ↔ 𝜏 ) ↔ ( 𝜏 ↔ 𝜃 ) ) → ( ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → ( 𝜃 ↔ 𝜏 ) ) ↔ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → ( 𝜏 ↔ 𝜃 ) ) ) ) |
| 4 |
3
|
biimpcd |
⊢ ( ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → ( 𝜃 ↔ 𝜏 ) ) → ( ( ( 𝜃 ↔ 𝜏 ) ↔ ( 𝜏 ↔ 𝜃 ) ) → ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → ( 𝜏 ↔ 𝜃 ) ) ) ) |
| 5 |
1 2 4
|
e10 |
⊢ ( ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → ( 𝜃 ↔ 𝜏 ) ) ▶ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → ( 𝜏 ↔ 𝜃 ) ) ) |
| 6 |
|
3impexp |
⊢ ( ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → ( 𝜏 ↔ 𝜃 ) ) ↔ ( 𝜑 → ( 𝜓 → ( 𝜒 → ( 𝜏 ↔ 𝜃 ) ) ) ) ) |
| 7 |
6
|
biimpi |
⊢ ( ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → ( 𝜏 ↔ 𝜃 ) ) → ( 𝜑 → ( 𝜓 → ( 𝜒 → ( 𝜏 ↔ 𝜃 ) ) ) ) ) |
| 8 |
5 7
|
e1a |
⊢ ( ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → ( 𝜃 ↔ 𝜏 ) ) ▶ ( 𝜑 → ( 𝜓 → ( 𝜒 → ( 𝜏 ↔ 𝜃 ) ) ) ) ) |
| 9 |
8
|
in1 |
⊢ ( ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → ( 𝜃 ↔ 𝜏 ) ) → ( 𝜑 → ( 𝜓 → ( 𝜒 → ( 𝜏 ↔ 𝜃 ) ) ) ) ) |
| 10 |
|
idn1 |
⊢ ( ( 𝜑 → ( 𝜓 → ( 𝜒 → ( 𝜏 ↔ 𝜃 ) ) ) ) ▶ ( 𝜑 → ( 𝜓 → ( 𝜒 → ( 𝜏 ↔ 𝜃 ) ) ) ) ) |
| 11 |
6
|
biimpri |
⊢ ( ( 𝜑 → ( 𝜓 → ( 𝜒 → ( 𝜏 ↔ 𝜃 ) ) ) ) → ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → ( 𝜏 ↔ 𝜃 ) ) ) |
| 12 |
10 11
|
e1a |
⊢ ( ( 𝜑 → ( 𝜓 → ( 𝜒 → ( 𝜏 ↔ 𝜃 ) ) ) ) ▶ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → ( 𝜏 ↔ 𝜃 ) ) ) |
| 13 |
3
|
biimprcd |
⊢ ( ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → ( 𝜏 ↔ 𝜃 ) ) → ( ( ( 𝜃 ↔ 𝜏 ) ↔ ( 𝜏 ↔ 𝜃 ) ) → ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → ( 𝜃 ↔ 𝜏 ) ) ) ) |
| 14 |
12 2 13
|
e10 |
⊢ ( ( 𝜑 → ( 𝜓 → ( 𝜒 → ( 𝜏 ↔ 𝜃 ) ) ) ) ▶ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → ( 𝜃 ↔ 𝜏 ) ) ) |
| 15 |
14
|
in1 |
⊢ ( ( 𝜑 → ( 𝜓 → ( 𝜒 → ( 𝜏 ↔ 𝜃 ) ) ) ) → ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → ( 𝜃 ↔ 𝜏 ) ) ) |
| 16 |
|
impbi |
⊢ ( ( ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → ( 𝜃 ↔ 𝜏 ) ) → ( 𝜑 → ( 𝜓 → ( 𝜒 → ( 𝜏 ↔ 𝜃 ) ) ) ) ) → ( ( ( 𝜑 → ( 𝜓 → ( 𝜒 → ( 𝜏 ↔ 𝜃 ) ) ) ) → ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → ( 𝜃 ↔ 𝜏 ) ) ) → ( ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → ( 𝜃 ↔ 𝜏 ) ) ↔ ( 𝜑 → ( 𝜓 → ( 𝜒 → ( 𝜏 ↔ 𝜃 ) ) ) ) ) ) ) |
| 17 |
9 15 16
|
e00 |
⊢ ( ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → ( 𝜃 ↔ 𝜏 ) ) ↔ ( 𝜑 → ( 𝜓 → ( 𝜒 → ( 𝜏 ↔ 𝜃 ) ) ) ) ) |