Description: Inference associated with 3impexpbicom . Derived automatically from 3impexpbicomiVD . (Contributed by Alan Sare, 31-Dec-2011)
Ref | Expression | ||
---|---|---|---|
Hypothesis | 3impexpbicomi.1 | ⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → ( 𝜃 ↔ 𝜏 ) ) | |
Assertion | 3impexpbicomi | ⊢ ( 𝜑 → ( 𝜓 → ( 𝜒 → ( 𝜏 ↔ 𝜃 ) ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3impexpbicomi.1 | ⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → ( 𝜃 ↔ 𝜏 ) ) | |
2 | 1 | bicomd | ⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → ( 𝜏 ↔ 𝜃 ) ) |
3 | 2 | 3exp | ⊢ ( 𝜑 → ( 𝜓 → ( 𝜒 → ( 𝜏 ↔ 𝜃 ) ) ) ) |