Metamath Proof Explorer


Theorem 3impexpbicomi

Description: Inference associated with 3impexpbicom . Derived automatically from 3impexpbicomiVD . (Contributed by Alan Sare, 31-Dec-2011)

Ref Expression
Hypothesis 3impexpbicomi.1 ( ( 𝜑𝜓𝜒 ) → ( 𝜃𝜏 ) )
Assertion 3impexpbicomi ( 𝜑 → ( 𝜓 → ( 𝜒 → ( 𝜏𝜃 ) ) ) )

Proof

Step Hyp Ref Expression
1 3impexpbicomi.1 ( ( 𝜑𝜓𝜒 ) → ( 𝜃𝜏 ) )
2 1 bicomd ( ( 𝜑𝜓𝜒 ) → ( 𝜏𝜃 ) )
3 2 3exp ( 𝜑 → ( 𝜓 → ( 𝜒 → ( 𝜏𝜃 ) ) ) )